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Abstract 

A wearable system that can be used in different settings to collect gait 

parameters on subjects with a mild traumatic brain injury (mTBI) would allow 

clinicians to collect needed data of subjects outside of the laboratory setting. Mild 

traumatic brain injuries stem from a number of causes such as illnesses, strokes, 

accidents or battlefield traumas. These injuries can cause issues with everyday 

tasks, such as gait, and are linked with vestibular dysfunction [1]. Different 

wearable sensor systems were analyzed prior to starting this study along with 

relevant gait parameters associated with mild traumatic brain injury. To monitor 

gait parameters relevant to mild traumatic brain injury (cadence, torso rate of 

rotation, head rate of rotation and stride length) a wearable sensor system was 

selected (APDM Opal Movement Monitor [13]) and compared against the gold 

standard optical tracking system (Vicon) [2]. A group of ten, 20-27 year old, 

healthy subjects were used to validate the APDM Movement Monitor system 

using the Pearson’s R correlation value [35]. Subjects were asked to wear the 

APDM movement monitors in conjunction with the reflective markers of the Vicon 

system while performing three sessions of gait trials: a normal gait speed, a fast 

gait speed and a slow gait speed. Using the Pearson’s R correlation values, 

cadence, torso rate of rotation, and head rate of rotation were found to be highly 

correlated between both systems. The Pearson’s R correlations for cadence, 
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torso rate of rotation, head rate of rotation and stride length were 0.967, 0.907, 

0.942, and 0.861, respectively. These correlation values suggest the gait 

parameters relevant to mild traumatic brain injury are highly correlated between 

both the APDM Movement Monitor system and the Vicon system, and APDM’s 

wearable sensor system was lightweight, portable and less costly than the Vicon 

system.
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Chapter 1 - Introduction 

  The leading causes of traumatic brain injury (TBI) in the US are falls 

(28%), motor vehicle accidents (20%) and assaults (11%) [3]. Resultant gait 

abnormalities can include decreased cadence, shorter stride lengths and 

hesitation while performing a task. TBI can cause a wide range of symptoms 

depending on the severity of the TBI. There are approximately four categories 

that TBI effect: motor function, sensory response, cognitive and behavioral 

dysfunction.  Sensory disturbances, spasticity, decreased coordination and motor 

control issues are all signs of motor deficits in TBI patients [4]. Patients suffering 

from mild to severe TBI may require some form of assistance in rehabilitation 

from a clinician.  

A device that can monitor subjects at home can potentially assist in a 

faster rehabilitation [5]. A cost effective wearable sensor system, that has the 

same reliability as the gold standard of an optical tracking system, would aid in 

the rehabilitation of subjects with a mild traumatic brain injury. A device that 

would be less intrusive to the subject and can be worn outside the Laboratory 

would provide better representation of the individual’s abnormalities. This device 

should be a commercially available system that can be used to monitor 

parameters associated with a mild traumatic brain injury (mTBI). 
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Wearable sensor systems are devices that contain small sensors such as 

inertial measurement units that can be worn on the body. An inertial 

measurement unit contains a triaxial accelerometer, triaxial gyroscope and 

triaxial magnetometer. The system can utilize some form of the inertial 

measurement unit or use the entire unit. Software packages are used to read 

these sensors and provide feedback to the user on what the system measures. 

Typically, these systems are validated against gold standard systems which are 

considered to be the best known systems available to perform the desired 

operation [6], such as an optical tracking system [2]. An optical tracking system 

utilizes optical tracking cameras that track the movement of subjects performing 

various tests while wearing precisely located markers that represent body 

segments.   

 

1.1 Goal of Thesis 

The primary goal of this study was to determine the feasibility of a 

commercially available wearable sensor system against an optical tracking 

system that is considered to be the gold standard. A wearable sensor system 

must be able to accurately monitor gait parameters relevant to mild traumatic 

brain injury which are: cadence, torso rate of rotation, head rate of rotation, and 

stride length. 
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Chapter 2 - Background 

2.1  Mild Traumatic Brain Injury 

Traumatic brain injuries can stem from a number of causes such as 

illnesses, strokes, accidents, and battlefield traumas. These traumas, depending 

on the severity, can cause a brain injury. Symptoms of an mTBI can cause an 

individual to have issues performing everyday tasks [1, 7]. Damage to the 

vestibular system can cause subjects to lose the ability to maintain balance 

during a normal task. Walking and vision are normal tasks that depend on the 

vestibular system, and when damaged, these tasks become extremely difficult to 

maintain [8]. Subjects compensate by slowing down and hesitating while 

performing a task. As an example, subjects with gait disorders from an mTBI can 

lack the confidence to walk normally. A normal subject would take a stride length 

of approximately 1.5 meters, while an individual with an mTBI would take a 1.2 

meter stride length because of the lack of confidence to judge the distance [9, 

10].  These variations in subject’s tasks can be picked up using clinical 

evaluation tools [11]. 

Clinicians use these evaluation tools to help them assess a patient’s 

disorder: two common types of tests are Berg Balance Scale (BBS) and Dynamic 

Gait Index (DGI). The BBS tests are strictly used to monitor the balance of a 

patient with vestibular disorders. A scale from 0 to 4 (0 indicates the lowest 
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performance while 4 indicates the highest attainable) used to rate the 

performance of the individual on 14 functional mobility items.  While the BBS test  

was designed to test balance, gait abnormalities are best assessed using the 

DGI, which rates a participant from 0 to 3 (0 being the lowest and 3 being the 

highest attainable score) on 8 commonly occurring tasks [11]. These tasks 

include normal walking, walking at different speeds, walking with head turned, 

walking and turning, walking around and over obstacles and stair climbing. 

2.2 Timed Up and Go (TUG) 

A timed up and go test was designed to measure vestibular dysfunction. 

This test requires subjects to sit with their back to a chair and then they would get 

up and walk 10ft (3m), then turn around and come back to the chair. Once at the 

chair, they would rotate and sit down. Subjects were given multiple trials so as to 

average the trial times. The duration of the test in seconds is used to rate each 

individual as follows: 

• If the task is completed in less than 10 seconds, the individual is 

generally freely mobile.  

• If the task is completed in 10-20 seconds, the individual is mostly 

independent.  

• If the task is completed in 20-29 seconds, the individual has 

variable mobility.  

• If the task is completed in more than 29 seconds, the individual is 

mobility impaired [5, 12, 13].  
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2.3 Abnormalities Relative to Mild Traumatic Brain Injury 

Subjects with an mTBI exhibit symptoms differently depending on the 

severity of the brain injury. Issues with the vestibular system contribute to the 

inability of an individual to balance themselves. The body’s vestibular system 

allows the body to control its balance or recognize its sense of spatial orientation.  

Disorders of this type are induced by blast, illness, and physical trauma to the 

brain [1, 4, 7, 14]. Since there are so many abnormalities that a subject can 

exhibit, determining which parameters were most relevant to a majority of mTBI 

subjects was part of this study.   

2.3.1 Cadence and Obstacle Avoidance 

Cadence is the amount of steps per minute and is unique to every 

individual. Normal gait in most mTBI studies are determined by sampling a 

population of healthy individuals and using this data as normative data [10, 16]. A 

subject in question would either exhibit below the normal or above the normal 

dependent on the severity of the symptoms. As normal subjects walk, they have 

confidence present in their gait and a sense of competency due to years of 

walking [10]. Individuals with an mTBI would have a reduced cadence as 

compared to normal subjects [15]. Clinicians would test a subject along a defined 

path and time the trial. Subjects that exhibit symptoms will generally have slower 

speeds as compared to normative data. Reduced cadence is present in almost 

all types of mTBI and the degree of severity is dependent on the injury. In 

general, cadence decreases in most mTBI cases [1, 7, 14, 15]. 
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Obstacle avoidance can be affected by a subject’s inability to judge the 

obstacle or by lacking the confidence to perform the avoidance. Obstacle 

avoidance is an everyday task that is constantly overlooked. These obstacles 

may include uneven streets, holes, and pieces of debris blocking a path [15]. 

Normal individuals develop habitual tendencies and underestimate the actual 

process of avoiding obstacles, becoming second nature. Subjects lacking the 

ability to overcome an obstacle, such as walking over it, could fall because of 

instability. Subjects lacking the confidence to perform the task believe that if a 

certain step is taken, it will cause them to fall or become unstable.  As a result, 

subjects would make compromises in gait in order to successfully avoid the 

obstacle or overcome it. This abnormality is tested using the Dynamic Gait Index 

which adds a gap of some distance that a patient must overcome and they are 

scored on a scale based on the performance [11, 16].  

2.3.2 Stride Length 

Stride length is the distance between consecutive heel strikes of the same 

foot. Subjects with an mTBI exhibit a smaller stride length as compared to a 

healthy subject of the same body type. The stride length in each mTBI case is 

different depending on the severity of the injury, but this abnormality is present in 

all mTBI cases [4, 7, 10, 18]. The reduction in stride lengths is caused by the 

vestibular system being damaged. With the vestibular system being damaged, 

subjects could become unstable and increase the risk of fall. As a result, subjects 
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would become hesitant in taking a bigger stride and end up decreasing their 

stride length to minimize the risk of fall or destabilization [1, 4]. 

2.3.3 Eye, Head and Torso Rate of Rotation  

The vestibular system sends control signals to the neural structures that 

control the eye and this system is composed of sensory inputs form the eyes and 

inner ear. The eyes will move relevant to the head movement and as the head 

turns in one direction, the eyes will turn in the opposite direction keeping track of 

the object in view. This process is called the vestibulo-ocular reflex, and uses the 

eyes and inner ear to control the stability of the body in a type of control system 

environment [16]. Any interruption in this control system could affect the function 

of the vestibular system which would cause the body to become unstable. When 

the eyes lose track of the object they are on, they present the mTBI subject with 

unwanted symptoms such as: dizziness, confusion, headaches and inability to 

balance while moving [17]. A prime example of this is when subjects are asked to 

track a wall mounted clock while moving forward. As they walk, they shift their 

head from left to right while keeping their eyes on the clock. If subjects with an 

mTBI rotate their head, their eyes may lose track of the object they were looking 

at.  

In conjunction with eye motion, the rate of rotation of the head and torso 

also play roles in gait. The eyes and the head work in conjunction to monitor 

balance and control using the vestibular system located in the head. When the 

torso performs a turn, it causes the head (which houses the vestibular system) to 

rotate in respect to the torso. Clinical evidence suggests that patients with mTBI 
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having a head and torso rate of rotation greater than 85-100 degrees per second 

would tend to exhibit vestibular dysfunction [18].  This would cause subject’s fall 

risk to increase. The rates of rotations are pertinent to torso as well as the head 

and eyes because the torso drives the rotation of the head during turns. Current 

studies are being done at clinical labs to monitor eye, head and torso rates of 

rotation. Clinical evidence suggests that eye, head and torso rates of rotation are 

prime indicators of the severity of an mTBI. Most subjects that have an mTBI 

have damage done to their vestibular system [7, 18]. A rate of rotation past the 

85-100 degrees per second would cause the subject to become disoriented and 

increase their risk of a falling [18].  

2.3.4 Selected Gait Abnormalities Relevant to mTBI  

The selected gait parameters for this study are present in all mTBI cases: 

cadence, torso rate of rotation, head rate of rotation and stride length. The 

parameters selected were all different from one another and were used in this 

study to validate a wearable sensor system. Studies were conducted using 

groups of these parameters together in one form or another to test subjects with 

mild to severe TBI. [7].  

2.3.5 Wearable Sensor Technology 

Wearable sensors are used in academic settings for many studies. 

Universities and organizations have come up with different iterations of wearable 

sensor systems. While academia produces new technology quickly, this 

technology does not enter the commercial market as quickly, and it is often not 
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commercially available [19]. Determining which system is commercially available 

and can be used to monitor gait parameters is a part of this study.  

Wearable sensor systems typically are composed of inertial measurement 

units (IMU). IMU’s are devices that have accelerometers, gyroscopes and 

magnetometers all integrated into a single device. The axes of the sensors 

(Accelerometer, gyroscope and magnetometer) were aligned with one another, 

while the axes of each sensor were orthogonal to one another. Each wearable 

sensor system monitors different parameters based on how the system is 

integrated and designed. The sensors that make up these systems each have a 

purpose and are explained in detail later on. This study looked for a system that 

is commercially available, portable, cost efficient and capable of monitoring the 

following parameters: cadence, torso rate of rotation, head rate of rotation and 

stride length.  The system is required to cost less than a gold standard system 

such as an optical tracking system. Listed below are types of sensors used within 

a system, along with what each type of sensor does, and each served a unique 

purpose within that system. 

2.3.6 Accelerometers 

  Accelerometers are sensors that pick up changes in acceleration. 

Accelerometers are based on a mechanical sensing unit which consists of a test 

mass attached to a mechanical suspension system with respect to a reference 

frame. Inertial forces cause the mass to deflect according to Newton’s second 

law. Accelerations are measured electrically from the impact of the test mass 
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with respect to the reference frame. Most accelerometers are grouped into three 

categories: piezoresistive, piezoelectric and differential capacitive 

accelerometers. Each of these types of accelerometers is used for a specific 

purpose based on the design of the device [17].   

2.3.7 Piezoresistive Accelerometers 

Piezoresistive accelerometer units have cantilever beams composed of a 

special material, such as a crystal, with a test mass on the end [20]. The base 

portions of the cantilevered beam have strain gauges set in the form of a 

Wheatstone bridge located around it and are an integral part of the mass as seen 

in Figure 1. A Wheatstone bridge is an electrical circuit used to measure 

unknown electrical resistance, which is ideal for measuring strain. 

 

Figure 1: Diagram of a Standard Piezoresistive Accelerometer  

When voltage is sent through a Wheatstone bridge, as the cantilevered 

beam moves, the resistance changes in respect to the acceleration, causing an 

electrical resistance to be produced and measured. This change in voltage from 

the strain gauge is picked up using a data acquisition board and processed using 

a signal processing system. There is a pitfall to this type of sensor, in that it is 

susceptible to drifts due to temperature variations and/or input voltage 

irregularities [21, 22]. For example, as data from this accelerometer is recorded 

Strain Gauge 

Mass 
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over a period of time, the signal can slowly increase or decrease due to the drifts 

mentioned. To eliminate these drifts, a filter must be used [13].  

2.3.8 Piezoelectric Accelerometers  

Piezoelectric accelerometers are units that have a mass supported by a 

spring-like fixture over a piezo crystal [23]. The components of the device are 

sealed in a housing unit that is mounted to the object in question. These types of 

accelerometers are typically used to measure vibrations, and a schematic of this 

device can be seen in Figure 2. As vibration occurs, the mass vibrates to the 

frequency of the device and this mechanical motion is then converted to electrical 

signals and sent to a data acquisition board [22]. 

 

Figure 2: Schematic of a Piezoelectric Accelerometer 

These types of sensors have thresholds as to how much vibration they 

can withstand, and they can have a dynamic range for the sensor which causes it 

to peak out once it exceeds a certain threshold. The damper cuts down the 

intensity of the vibration. With all the components integrated together, these 

Mass 

Spring 

Conductive 
Material 

Damper 

Piezo- 
Crystal 

Housing 
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types of accelerometers are ideal for measuring the vibration in mechanical 

device. 

2.3.9 Differential Capacitive Accelerometers  

Differential capacitive accelerometers are the most common type of 

accelerometers available and they are integrated into many devices due to their 

small size. This system works by using a seismic mass supported between two 

electrode plates. Conductive material must be used in order to register a 

capacitance between the electrodes.  As motion is applied, the mass moves 

towards one of the electrodes seen in Figure 3. The capacity difference between 

the electrodes indicates the direction and intensity of the acceleration. The 

design of the accelerometer would determine if it is a single axis unit or multi axis 

unit [3]. The triaxial unit allows for representation of an object by all three axes. 

 

 

Figure 3: Diagram of a Differential Capacitive Accelerometer 

Differential capacitive accelerometers have significantly reduced power 

consumption and provide faster response compared to piezoresistive and 

piezoelectric accelerometers [3, 21, 24, 25]. This accelerometer has the 

Fixed  
Ends 

Electrodes 

Applied 
Acceleration 

F 
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capability of being compact, cost effective, and capable of being 

microelectromechanical systems (M.E.M.S.) sizes. 

2.3.10 Gyroscopes 

Gyroscopes are devices used to measure the rotation about an axis in 

question. A single axis gyroscope measures the rotation of a single axis while a 

three axis gyroscope measures three different axes.  These sensors can be very 

accurate in controlled conditions. Gyroscopes combined with accelerometers, 

can be combined together to measure rotational velocities and inertial forces. 

Gyroscopes can be manufactured in M.E.M.S. scale and used in many devices 

[13, 26, 27]. 

The accuracy of a gyroscope typically degrades over time due to drift. Drift 

occurs when data begins to skew in the positive or negative direction; this can be 

brought on by temperature changes in the device. In addition, voltage 

fluctuations can generate drift. Filtering the results can help remove drift from the 

system [5, 13]. By controlling the drift, the gyroscope can be used as an accurate 

device for measuring the angular velocity about an axis. 

2.3.11 Optical Tracking System 

Optical tracking systems utilize camera-based technology to measure 

precise and accurate movements of a subject. Because of these systems 

accuracy, they are considered to be a gold standard. The entire system requires 

the use of a large room to set up the cameras, cables, computer workstations 



www.manaraa.com

 

14 

and calibration equipment. Cameras are placed strategically around an area to 

provide a field of view that the subject will be working in. Cameras track the 

markers placed on the subject’s body and locations of the markers are 

dependent on the type of study being conducted.  Active markers or passive 

markers are utilized depending on the study.  

 

.  

Figure 4: Optical Tracking Cameras Focused on Subject 

Passive markers are retro-reflective spherical balls with adhesive backings 

to them. The markers are wrapped in reflective tape that is highly reflective to 

infrared illuminators that surround the optical cameras. Figure 4 shows a subject 

with passive markers and the locations of the optical cameras [28, 29].  

Active markers emit light that are picked up by a camera.  Markers are 

spherical in shape and come in different sizes depending on the application 

required. These markers require hardware and battery power to emit the light 
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source. Both active and passive markers represent body segments that cameras 

can track [17]. 

2.4 Commercially Available Sensor System 

Currently, there are commercially available sensor systems that can 

measure a wide variety of parameters. Listed below are a small handful of 

systems that can be purchased and utilized for this study. The system must be 

able to monitor cadence, torso rate of rotation, head rate of rotation and stride 

length. The system must have the following features: 

1. The sensor system components must not weigh more than a standard 

metal wrist watch.  

2. The system must be able to transmit data wirelessly to a computer and 

store it.  

3. The sensor system must have manufacturer’s mounting hardware 

provided, such as straps and harnesses (wearable).  

4. Battery life must be no less than 8 hours of continuous use. 

5. The system must cost less than a gold standard system. 

2.4.1 AMM Sensor 

AMM stands for Advanced Motion Measurement, Inc. This company 

provides a sensor system called AmmSensor, which incorporates a triaxial 

accelerometer, a triaxial gyroscope and a triaxial magnetometer. These set of 

sensors are known as an inertial measurement units and are portable units that 
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can be attached to the body with wrist straps or a harness. The straps and 

harness are accessories offered by the manufacture for additional purchase. The 

unit is a rechargeable system that runs approximately 6 hours. The device has a 

built in auditory feedback speaker that can be programmed to provide feedback 

to the user. Software must be purchased as a necessity for this product. The 

system uses one module, and the module can be applied to any area in question. 

This system did not have a software package to monitor all the parameters 

desired in this study. The AMM unit cost $1200.00 and the entire system with the 

software development kit was $1895.00. 

2.4.2 APDM Opal Movement Monitor System 

APDM stands for Ambulatory Parkinson’s Disease Monitoring. This 

company specializes in a product to monitor subjects’ gait patterns. This sensor 

suite was designed for monitoring patients with Parkinson’s disease but can be 

used for monitoring gait parameters relevant to other disorders. These monitor 

units are called Opal Movement Monitors. In conjunction with the monitor system, 

a software package called Mobility Lab can be purchased, which records and 

analyzes the data from the monitors. Mobility Lab has the capability of 

processing eight movement monitors wirelessly with an access point. The 

monitors are designed with a triaxial accelerometer, triaxial gyroscope and 

triaxial magnetometer. The monitors are portable, lightweight and small due to 

their compact electronics and M.E.M.S technology. The manufacturer had also 
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created harnesses for the different body locations that the monitor would be 

placed.  

Mobility Lab is known as a host program that configures and runs trials 

based on plug-ins. The plug-in iTug has the ability to work with Mobility Lab, 

which requires the subject to perform a modified “timed up and go” test to 

measure gait parameters. The host software analyzes the data from all the 

monitors based on the iTug algorithm. Upon completion of the analysis, Mobility 

Lab displays the data in a full report detailing all the trials and parameters tested 

[13]. The APDM Opal movement monitor costs $2399.00 a piece and the entire 

system, including Mobility Lab, costs $20,032.00. 

2.4.3 InertiaCube BT 

The InertiaCube BT sensor is a dynamic wireless inertial orientation 

sensor provided by InterSense Inc. The device has a three-axis gyroscope and 

has an eight hour battery life.  Up to five units can be combined together on the 

body, and can be strapped on to the body at any desired location.  By allowing 

the user to mount the unit anywhere on the body, a detailed analysis of the 

desired body segment would be accomplished. This device doesn’t have a 

software package that has the capability of monitoring the gait parameters 

needed for subjects with vestibular disorders. Applications of this product can be 

measurements for sports biomechanics, physical therapy and rehabilitation. The 

device can be used to measure gait patterns and be used to measure rate of 

rotations of the head and torso. The system does not come with software and 
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must be created using the software development kit that is purchased from the 

company. The cost of the InertiaCube BT could not be obtained for this study. 

2.4.4 Zephr BioHarness BT 

The Zephr BioHarness Bt made by Zephyr is a single module sensor 

system that is strapped around the sternum. Sensors are sewn into the fabric 

strap that is wrapped around the subject’s sternum. The sensors sewn into the 

strap measure vitals such as: heart rate, breathing rate and skin temperature. 

The device is also capable of measuring acceleration, position, and skin 

conductance at the sternum. The system is compact and has the ability to 

communicate via Bluetooth to a computer. Incorporated within this device is a 

triaxial accelerometer. Some of the features that this device also have is its ability 

to record heart rate, breathing rate, skin temperature, position, skin conductance, 

ECG logging and 570 hours of data storage. The device only has one unit and 

cannot monitor gait parameters properly. The primary use of this system is to 

measure subject’s vitals during a trial. The BioHarness costs $1399.00 and the 

software development kit is $849.00 more. 

2.4.5 Gait Mat II 

The Gait Mat II measures gait parameters from a pressure sensitive mat, 

which houses embedded pressure switches within the mat itself. The device 

measures step length, stride length, support base, step time, swing time, stance 

time, single support time, double support time and average velocity. There are no 
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sensors that the subject has to wear, which makes this device non-intrusive to 

the subject. The main inputs for this device are from the user’s heel and toe, 

which drive the calculations in this device.  Pressure sensitive switches are 

equally spaced within the mat. This allows the software to know the exact 

distance relative to a surrounding sensor. This device measures gait parameters 

required for the study but does not measure rotation information. The selection 

requirement that this device does not meet is that it is not portable and wearable 

outside the laboratory. This system is widely used as a clinical evaluation tool to 

measure gait parameters. The Gait Mat II costs $18000.00 and comes with the 

software to run the device and analyze the data. 

2.4.6 Vicon System 

A Vicon system is an optical tracking system for motion analysis. The 

system uses multiple optical tracking cameras to monitor human movement. The 

system calibrates all the cameras to a common reference plane. The type of 

study drives the configuration for the cameras. This reference plane calibrates to 

a global coordinate frame, which is referenced in Visual 3D. This plane calibrates 

the distance between markers for future calculations in the analysis program. 

The system converts pixels to millimeters and calculates what the distances are 

based on triangulation. Triangulation is done by taking the 2D image data from 

two cameras and locating the marker of interest in space to the global coordinate 

frame. One camera view would provide the x and y coordinate from its own 

reference plane, while the 2nd camera would provide the x and y coordinate from 
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its own reference plane as well, and the point at which both image data meet in 

respect to the global coordinate frame provides the location of the marker in 

space. This would locate the marker in 3D space providing it with an x, y and z 

coordinates. The system has an accuracy of 0.5 mm and a sampling rate of 120 

Hz [6, 30]. Accuracy in the Vicon system is dependent on the locations of the 

passive markers on the subject. The markers are placed at key locations on the 

body that represent a segment on the subject’s body. By performing this task on 

every segment, the subject’s physical attributes are represented and are not 

assumed to be symmetrical. The optical tracking systems, such as the Vicon, are 

considered the gold standard of gait analysis due to their precision and accuracy 

[6, 31]. 

The set up for the system requires a large laboratory to set up the 

cameras and gait path. A powerful computer is needed to process the data from 

the Vicon and analyze it. Software packages, such as Visual 3D, are used to 

analyze the data from trials and in large sets. Visual 3D has the capability of 

being customizable to the study and can calculate any parameter desired. This 

system is capable of measuring cadence, torso rate of rotation, head rate or 

rotation and stride length by using the Visual 3D software. The Vicon system 

itself costs roughly $154,000.00 and Visual 3D is $20,615.00. 

2.5 mTBI System Monitor Selection 

Three wearable sensor systems, the AMM sensor, APDM system, and 

InertiCube BT system, were chosen as possible candidates for use in this study, 
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and all were capable of measuring the desired parameters via the hardware and 

modified software. The desired gait parameters are: cadence, torso rate of 

rotation, head rate of rotation and stride length. The sensors were capable of 

measuring the desired parameters, but the software packages had to be 

developed. A selection matrix was used to differentiate the systems against one 

another. The matrix was used to select the best system to be used in this study 

and the results are broken up into Table1.  

The parameters of the matrix were divided up and given factors of 

importance depending on the scope of the study. The number of sensors per 

system was critical in developing a system that was accurate and precise. 

Table 1: Selection Guide for the Sensor System 
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Importance 
Factor 1 2 1 1 2 1 2 3 2   

AMM 8 ✔   IMU ✔ $1,200.00 0 1 42 10 

APDM Opal  16 ✔ ✔ IMU ✔ $2,399.00 16 8 22 14 

InertiaCube 
BT 6 ✔   Gyroscope ✔  N/A 0 7 67 9 

 

After considerations of all the commercially available systems and what 

each measured, the best system selected for the given parameters was the 

APDM system. For the following reasons, APDM’s Opal movement monitor and 

Mobility Lab allowed for optimal calculation of the given parameters: 
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1. The monitors weigh less than a standard metal wrist watch.  

2. The system transmits data wirelessly via ZigBee.  

3. Convenient mounting hardware is available from the manufacture. 

4. Has a battery life of 16 hours. 

5. The system costs less than a gold standard system. 

6. The software calculates cadence, torso rate of rotation, head rate of 

rotation and stride length. 

2.5.1 Equipment Purchased and Utilized 

The hardware was purchased from APDM and consisted of five Opal 

movement monitors and Mobility Lab software. With this purchase, the monitors 

came with the docking stations, chargers, wireless access point, and necessary 

wiring.  Mobility Lab was purchased as beta software that would be used in this 

study.  

 

Figure 5: Accessories for APDM 

Figure 5 shows the accessories purchased from APDM. In order from left 

to right are a sternum strap, wireless access point, an ankle strap and a waist 

strap. Table 2 has an itemized list of all the items purchased from APDM. The hat 

was an item that was custom made to fit the monitor and Vicon markers. The 
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Vicon markers and Opal monitor were coplanar with one another and both planes 

had collinear axes as seen in Figure 6. This was a critical design parameter to 

prevent the need of more complex calculations.  

 

Figure 6: Collation of Axis on Both Systems 

For this study the Vicon system was at the University of South Florida’s 

Rehabilitation Robotics Testbed (RRT) facility and was used at this facility. The 

Vicon system was set up and functional within this facility when this study 

started. This system utilized eight optical tracking cameras and a custom 

walkway for gait trials as seen in Figure 4.  

Table 2: Itemized List of Items Purchased From APDM 

Item Quantity 

Opal Movement Monitor 5 

Docking Station 5 

Wireless Access Point 1 

Sternum Strap 1 

Waist Strap 1 

Ankle Straps 2 

Hat (custom) 1 

Mobility Lab & iTug 1 

Central Axis 
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All the cameras were connected to an interface unit that was connected to 

a computer. The computer was used to gather all the trial data and process it 

using Visual 3D. Reflective markers used for this study were also purchased to 

accompany the Vicon system. These markers were to be attached on the subject 

using a double sided tape and the custom head rig. As part of the head rig, a 

metronome was purchased to help guide the subject’s head shifting from left to 

right and was clipped onto the back of the hat. The metronome is a 

programmable tempo timer that has the capability of generating a tone at 

different intervals of time. The set up of the APDM station is seen in Figure 7 and 

the Vicon system set up is seen in Figure 8 in the following chapter.  

 

Figure 7: Configuration of the Docking Station and Access Point 
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Chapter 3 - Methods 

This study examined the feasibility of using APDM’s Opal movement 

monitors to detect selected gait parameters: cadence, torso rate of rotation, head 

rate of rotation and stride length against the gold standard of the Vicon system.  

3.1 Institutional Review Board Approval 

This study was approved by the institutional review board at the University 

of South Florida (IRB: Pro00003205) as a minimal risk study. The study was 

conducted at the University of South Florida’s RRT facility and complied with all 

institutional review board protocols.  

3.1.1 Volunteer Data  

The IRB protocol stated that individuals between the ages of 18 and 65 

were eligible for this study. A total of ten subjects were required to complete this 

study. This study selected five men and five women between the ages of 20 and 

27. Selection criteria required the subjects to be healthy and free of any gait 

abnormalities. Subjects selected for this study volunteered to participate. 

Subjects who participated in this study signed a consent form allowing for 

the physical measurement of their body to be recorded, as well as participation in 

this study. By signing the consent form, it signified that the subject understood 
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the study and the potential risks. Subjects were given a unique identification 

number to protect their privacy. Data relating the subject to their id code was 

locked away from public view and only study personnel were allowed to review 

this data. 

3.2 Experimental Setup 

The study took place at the University of South Florida’s RRT facility that 

housed the Vicon system, along with a lab space of 20’x 30’ with an eight-meter-

long wooden walkway. The walkway was the path on which subjects walked for 

each trial, and was located in the middle of eight optical tracking cameras 

mounted on adjustable tripods as seen in Figure 8. The field of view of the Vicon 

system was not able to monitor the full seven-meter walkway required for this 

study. The cameras were instead focused on the end of the walkway where the 

subject turned, allowing for optimal data collection at this location during each 

trial. The field of view was limited and allowed a limited space to collect data. The 

Vicon system required at least one full gait cycle to gather gait data, but in this 

study, the camera system monitored four gait cycles of the subject. Once all the 

cameras were located, the cameras were connected to a central station 

(computer) which powered and received the data. The Vicon system was 

calibrated to ensure accurate readings for each subject and recalibration was 

repeated before each subject. 

In contrast to the Vicon system, the APDM system was able to record the 

entire walkway on its monitors and did not require any modifications. This system 
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required at least three full stride lengths (roughly 7 meters) in order to calculate 

the needed gait parameters. The APDM system required the least set up in terms 

of hardware and space, and only needed a standard table that supported the 

laptop, docking stations, and wireless access point (Figure 7). Both systems 

needed to pick up cadence, torso rate of rotation, head rate of rotation and stride 

length. 

 

Figure 8: Configuration of Vicon Cameras for Study 

The set up was designed to optimally record data from both sets of 

systems simultaneously. A chair was placed at the start of the seven meters as 

seen in Figure 8, and a mark was placed at the seven meter line to signal the 

subject to turn around. This test was a modified timed up and go test, iTug. 

Figure 9 shows the subject in the ready position sitting in a chair prior to the trial. 

Subjects started the trial and walked into the field of view of the Vicon and then 

walked back to get back to the chair.  Monitors and markers were placed on the 
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subject prior to each set of trials. APDM monitors were placed at key locations 

specified by APDM, which are the sternum, lower lumbar, lower shank and head 

as seen in Figure 9. 

 

 

Figure 9: Subject in Ready Position 

Hardware used to mount the Opal monitors was adjusted for each 

individual to ensure that the monitors were secure. The monitors were placed on 

the subject first before the reflective markers of the Vicon system. A custom rig 

was developed and used to hold the head monitor and four reflective markers 

about the subject’s central axis on the head. This rig was sewn onto the top of 
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the hat seen in Figure 10. The hat used was a one size fits all, which was worn 

on the top of the head along with a metronome that was clipped on the back side 

of the hat. The metronome was used only during the fast and slow trials.  

 

 

 

Figure 10: Monitors and Reflective Markers Mounted on a Subject 

Once all the monitors were properly secured on the body, the reflective 

markers were attached to the subject. Using a checklist to assist in properly 

placing the markers was essential for consistency for each subject. The markers 

 

 

 

 

 

Head 

Lumbar 

Sternum 

Ankle Ankle 
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were placed on key locations, such as the joints, to accurately represent 

segments of the body.  Table 3 lists all the locations that require a reflective 

marker and are represented in Figure 10.  

Table 3: Reflective Marker Locations 

Torso Right  Leg Left leg Waist Right Arm Left  Arm 

� RSHO � RTHI � LTHI � RASI � RUPA � LUPA 

� LSHO � RKNE � LKNE � LASI � RELB � LELB 

� CLAV � RTIB � LTIB � RPSI � RWRA � LWRA 

� STRN � RANK � LANK � LPSI � RWRB � LWRB 

� RBAK � RTOE � LTOE Head � RFIN � LFIN 

� T10 � RHEE � LHEE � Wear 
Hat 

� RFRA � LFRA 

� C7      

 

Markers were placed according to the descriptions listed in Table 4. This 

configuration allowed accurate representation of the body’s movement during the 

trials. The marker placements were consistent between subjects. The head 

markers were mounted on a fixture coplanar with an APDM monitor on a 

standard baseball hat; this kept the center of rotation consistent between the two 

systems. 
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Table 4: Marker Descriptions 

Code name Marker description Marker placement 

C7 
7th Cervical 
vertebrae 

Spinous process of the 7th cervical 
vertebrae 

T10 
10th Thoracic 

vertebrae 
Spinous process of the 10th thoracic 

vertebrae 

CLAV Clavicle 
Jugular notch where the clavicles 

meet the sternum 

STRN Sternum Xiphoid process of the sternum 

RBAK & LBAK Right & Left back 
Middle of the right scapula 

(asymmetrical) 

RSHO  & 
LSHO Right & Left shoulder Right acromio-clavicular joint 

RUPA & LUPA 
Right & Left upper 

arm 
Placed on the upper arm between 
the elbow and shoulder markers 

RELB & LELB Right & Left elbow 
Right lateral epicondyle 

approximating elbow joint axis 

RWRA & 
LWRA Right & Left wrist A Wrist thumb side 

RWRB & 
LWRB Right & Left wrist B Wrist pinkie side – on the pisiform 

RFIN & LFIN Right & Left finger 

On the dorsum of the hand just 
below the head of the right third 

metacarpal 

RFRA & LFRA Right & Left forearm 
Placed on the lower arm between 

the wrist and elbow markers 

RTHI & LTHI Right & Left thigh 
Place the marker over the lower 

lateral 1/3 surface o the thigh 

RKNE & LKNE Right & Left knee 
Placed on the lateral epicondyle of 

the left knee 

RTIB & LTIB Right & Left tibia Placed on the lower 1/3 of the shank 

RANK & LANK Right & Left ankle Placed on the lateral malleolous 

RTOE & LTOE Right & Left toe 
Placed of the second metatarsal 

head 

RHEE & LHEE Right & Left heel Placed on  the calcaneous 

RASI & LASI Right & Left Asis 
Placed directly over the anterior 

superior iliac spine 

RPSI & LPSI Right & Left PSIS 
Placed directly over the posterior 

superior iliac spine 

 



www.manaraa.com

 

32 

 

The Vicon system needed to be calibrated properly and this was done 

after the subject was prepped to aid in maximizing the accuracy and precision. 

Calibration allowed for accurate segment lengths between markers. The Vicon 

system required at least two markers to create a segment and three markers to 

create a plane. Segments were set up properly according to Table 4. The torso 

rate of rotation and head rate of rotation required a plane to accurately measure 

the rate of rotation of those segments. Body segments composed of planes, such 

as the torso and head, were groups of at least three markers that came together 

to form a plane. Creating these planes was essential in computing the gait 

parameters in Visual 3D. 

3.3 Experimental Trials 

Subjects performed three types of sessions with three trials within each 

session. All sessions were performed a modified TUG test, which required the 

distance of the path to be extended from three meters to seven meters. The 

procedure for perform the test was the same as the traditional TUG test.  Trials 

started when the subjects were instructed to walk. Subjects stood up and walked 

to a mark on the floor. At the mark, they rotated 180 degrees to their left, and 

came back to the chair, where they rotated 180 degrees in the same direction to 

sit. Testing required two operators, one that operated the Vicon system and the 

other that operated the APDM system. The synchronization between the systems 

was done using verbal communication. The operator of the APDM signaled the 
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Vicon operator signifying the start of both systems. The trial ended when the 

APDM operator signaled for a stop.  

Each subject also performed a static trial which required the subject to 

stand straight up with their arms straight out as Figure 11 shows. This process 

allowed for the auto labeling of the markers using Table 4 in the Vicon 

workstation, which simplified the model generation process.   

 

 

Figure 11: Static Trial 

The first session that subjects performed was a normal gait speed in 

which a subject walked a normal gait speed with normal head movement. The 

subject repeated this three times.   
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The next session was the fast walk, in which subjects increased their gait 

speed faster than their normal, and shifted their head side to side with the help of 

a metronome. The metronome was used as a guide to help assist the subject to 

know where their head should be and at what repetition.  The metronome was 

set to 0.94 seconds a beat which resembled a higher rate (100 degrees per 

second) of rotation than an mTBI threshold of 85 degrees per second [18]. This 

threshold was the rate at which an mTBI subject would not lose vestibular 

function. Subjects were given two test trials to acclimate themselves to the 

session. 

 The third session was the slow walk, where the subject decreased their 

gait speed slower than their normal speed, and shifted their head slower. The 

metronome was set to the mTBI threshold of 85 degrees per second which was 

0.74 seconds per beat. Once again subjects were given two test trials to 

acclimate themselves to the metronome and slower speeds. Table 5 shows all 

the session information used for this study. 

Table 5: Session and Head Rate of Rotation Speed 

Session Trials Metronome Walking Speed 

Normal Walk 3 N/A Normal Speed 

Fast Walk 3 0.94 sec /beat Faster than Normal 

Slow Walk 3 0.74 sec/beat Slower than Normal 
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3.4 APDM Configuration 

The APDM system was configured once prior to testing the subjects. The 

configuration process labeled the locations of the monitors, to the monitors 

themselves in the software. This allowed the software to differentiate the 

monitors from one another and use the correct data.  

Monitors were given specific identification numbers from the manufacturer 

that was unique to the monitors and the wireless access point. Monitors 

associated with this study represented the Head, Right Leg, Left Leg, Lumbar 

and Torso.  

 

Figure 12: Tab Structure of Mobility Lab 

The monitor labels were listed under the Setup tab and the ID numbers 

were inputted into the Monitor ID column as can be seen listed in Table 6.  Figure 

12 shows the selection of different Mobility Lab tabs: “Setup” is used to configure 

the monitors, “Studies” is the library of all studies, “Subjects” is the subjects in the 

study, “Sessions” is the type of test being performed and “Trials” is the amount of 

trials per session. These configurations were set up to test conditions relevant to 

mTBI patients and were inputted under the Setup tab. 
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Table 6: Monitor Labels Locations 

Monitor ID Label 

163 Head 

161 Left Leg 

160 Lumbar 

164 Right Leg 

165 Trunk 

 

Configuration of the system was done using the “un-configured” button. 

The system displays “not ready” in blue when there are no configurations 

present. Clicking this button started the configuration process. The system 

configured by naming the monitors with the location they are measuring and was 

configured once Mobility Lab prompted to undock the monitors and wait for their 

green light to synchronize. The status of the system changed to “configured” 

once all the monitors and wireless access points were in sync. All monitors 

blinked twice in succession every few seconds indicating that they were 

synchronized and transmitting.  The “Ok” button was clicked to acknowledge the 

configuration, and the study was created. The study was called mTBI Validation. 

3.5 VICON Calibration  

The Vicon system was calibrated before each subject to ensure accuracy 

and precision. A static calibration was completed which referenced all the 

cameras to a calibrated L-frame (Figure 13) with reflective markers of known 

locations on it. A calibration wand was waved in the workspace to define and to 

calibrate the data collection volume. Direct linear transformations of each two –
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dimensional camera view of the reflective markers were converted to real metric 

units in three dimensions during the dynamic calibration.  

 

Figure 13: Calibrated Instruments 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wand 

L-Frame 



www.manaraa.com

 

38 

 

 

Chapter 4 - Data Analysis 

4.1 APDM Data 

Mobility Lab operated as a platform that ran the iTug plug-in and is the 

base software for recording and processing trials. The system recorded each trial 

based on the configuration on the iTug plug-in. The iTug operated as a modified 

TUG test in which the distance has been extended to seven meters instead of 

three due to the calculations required [5, 13, 32]. This allowed the system to 

calculate its parameters based on three full gait cycles. The data from the 

calculations are displayed in a full report generated by mobility lab.  

 

Figure 14: Trunk Gyroscope Data for Subject 

  

The iTug plug-in started off by recording a three-second buffer time at the 

beginning and at the end of the trial. This required the subjects to remain still for 

Buffer Buffer 

0° to 180° 
Turn 

180° to 360° 
Turn 
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that duration as it recorded. These areas were known as buffer areas and were 

used to help eliminate the drift from the gyroscopic data during calculations. The 

buffer time can be seen in Figure 14 at the beginning and end of the trial. The 

iTug plug-in used an infinite impulse response filter to eliminate the drift 

associated with temperature changes and voltage fluctuations. Mobility Lab 

created a report based on the iTug plug-in and calculated 38 gait parameters. 

Mobility Lab’s full report displayed all 38 gait parameters for each subject as well 

as the filtered data in graphical form from each monitor. Cadence, torso rate of 

rotation and stride length are parameters that the iTug plug-in calculated and 

displayed in the full report. Head rate of rotation was interpreted from graphical 

filtered data from a monitor mounted on the head as seen in Figure 10. The head 

sensor was an added feature to the iTug platform, in which it recorded the raw 

rate of rotation data about the Z axis.  

4.1.1 Cadence 

Cadence is the number of steps per minute. The iTug plug-in calculated 

cadence from the angular velocity of the pitch axis of the gyroscopes on the 

shanks. The software filtered the raw data from the shank using an infinite 

impulse filter that eliminates the drift, induced by changes in temperature and 

variations in supply voltage. The transfer function of the filter seen below has a 

cutoff frequency of � � 0.995 around 0.25 hertz. The ��	 is the unit delay in the 

transfer function below.   


��� � 1 � ��	
1 � � � ��	 
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The signal was filtered twice, once in the forward direction and then 

again in the reverse direction [13, 26, 33]. The iTug algorithm gathered the data 

and searched it for four gait events: initial contact of the right foot, terminal 

contact of the left foot, initial contact of left foot and terminal contact of right foot 

(Figure 15). In order to locate these events, the algorithm located a positive 

peak point greater than 50 degrees per second.  In the event that there were 

two peaks within 500 ms, the software chose the highest peak as the mid-

swing.  The next process was to search 1.5 ms before and after the mid-swing 

location for the initial and final contact area. The algorithm searched for the 

terminal and initial contact points as seen in Figure 15. The negative peak 

located after the mid-swing was selected as the initial contact. The initial 

contact happened when the heel strikes the ground. The peak points for 

terminal contact were small and they were filtered to smooth the signal out to 

locate the point. Signals were filtered using a low-pass finite impulse response 

filter. The frequency cutoff of this filter happened to be 30 hertz with a pass-

band attenuation of less than 0.5 dB. This filter removed the erratic peak points 

and allowed for the selection of the terminal contact point. The local minimum 

prior to the mid-swing with amplitude of less than -20 degrees per second was 

selected [2, 5, 13, 34]. The local minimum was chosen based on previous 

studies, which proved that the local minimum was the initial contact of the heel 

[5, 31]. Figure 15 depicts the local minimum chosen.  This process marked the 

locations of the terminal and initial contact points. The algorithm counted the 

number of steps in the time sequence in the trial and excluded the turns from 
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the data set. Exclusion criteria were based on using the sternum monitor to 

determine when the turns were happening. 

 Measuring the change in angle of the body provided the turn 

information. The angular velocity data from the sternum monitor about the roll 

axis was integrated to give the angle, then used to measure the position of the 

body while walking. As the subject walked forward, their angle was roughly 0 

degrees. If the sternum angle changed from 0 to 180 degrees, it signified the 

subject performed a turn, and if the torso angle changed from 180 to 360 

degrees, it signified the subject performed the second turn at the end of the trial 

before sitting on the chair. 

 

Figure 15: Sample Foot Movement [2, 5] 

 

Mid-Swing 
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Contact Area 

Terminal 
Contact Area 
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Figure 16: Zoom in on Right Leg Data of One Subject Trial 

The “A” in Figure 16 represents the Y axis or pitch axis of the right shank 

monitor. Each heel strike was considered a step and was recorded using the 

iTug algorithm.  The number of steps completed by the left and right shanks were 

added up, and divided by the time to complete those steps. The average 

cadence was displayed in Mobility Lab and was also plotted against the 

normative data provided by the company’s gait library in Figure 17.  

Trials did not last more than 60 seconds and were generally less. The 

formula below was used to convert the amount of steps in a given time period to 

steps per minute.  

�����
������ �

60 �������
1 ������ � ����� 

������ 

Upon converting the data to steps per minute, the data was displayed 

using Mobility Lab’s full report.  Cadence was displayed as a bar graph and 

displayed under the M row which represents the mean of cadence over the entire 

trial as depicted in Figure 17 [13].  The data was compared to normative data 

A 

A=Y-Axis 
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collected by the manufacturer’s gait library. This comparison was not needed for 

this study. 

 

Figure 17: Cadence from Mobility Lab 

4.1.2 Torso Rate of Rotation 

Torso rate of rotation was a parameter that the iTug plug-in calculated and 

defined as peak turn velocity.  This occurred when the subject walked down the 

seven meter walkway and turned 180 degrees to come back. As the subject 

walked down the seven meter walkway and approached the turn, the turn was 

measured by using the roll axis of the sternum monitor, seen in Figure 18. The 

algorithm integrated the angular velocity to calculate the angle change of the 

body. This angle change represented the movement of the body and detected 

the turn. Once the turn was detected, the algorithm measured the peak velocity. 

The subject’s body rotation while walking from the chair was roughly 0 degrees, 

and as they completed the turn, the angle was 180 degrees. The angle change 

from 0 to180 degrees was considered the act of the turn, and once complete, the 

subject had changed directions. Upon coming back to the chair, the subject 

C=Normative Data 

M=Mean  
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stopped and continued the rotation until they accomplished a rotation from 180 to 

360 degrees before they sat down. 

 

 

Figure 18: Yaw Representation on Sternum Monitor 

Figure 14 depicts the turn event and its magnitude. Mobility Lab recorded 

the raw data in radians per seconds and converted it to degrees per second. The 

full report generated a bar graph that displayed the peak turn velocity in Figure 

19. The peak turn velocities were represented as negative values, due to 

subjects turning in the opposite direction. As a result, the magnitude of the rate of 

the turn was taken and used. 

The graph in Figure 19 displayed the peak turn velocity as compared to 

normative data, which was gathered by the manufacture library of subjects. The 

ranges of normative data are displayed in C, and are represented on the graph 

itself as the shaded regions [13]. Normative data for peak turn velocity was not 

used in this study. 

Roll 
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Figure 19: Peak Turn Velocity in Mobility Lab 

4.1.3 Head Rate of Rotation 

The head monitor was intentionally mounted on the crown of the head to 

provide a central axis of rotation for the system, thus eliminating the need for 

translation calculations between the data from Vicon and the APDM data. By 

keeping the axis central to each person, the rotation was always about that axis. 

Figure 20 depicts the axis of the model from Vicon and that of the APDM monitor 

are collinear. The gyroscope within the monitor produced a raw rate of rotation in 

radians per second, and was filtered using an infinite impulse response filter to 

remove the drift in the system. Keeping the monitor central to the head provided 

an accurate result in conjunction with the Vicon system’s axis which was centrally 

located on the crown as well, and was the Z axis which was perpendicular to the 

floor. 

C=Normative Data 

M=Mean  
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Figure 20: Head Monitor Rotation on Subject 

  All of the maximum (every positive peak) and minimum (every negative 

peak) values on the graph were added up and averaged. The turn (0 to 180 

degrees) and turn to sit (180-360 degrees) readings were excluded from the data 

as the head was not shifting back and forth consistently at those locations. Each 

subject’s range of motion of the head was not controlled, but the rate at which 

their head was shifting from the left to right was. To help coordinate subjects’ 

head movements during the trials, a metronome was utilized to generate a tone 

at specific intervals of time. Table 5 shows the speeds used to set the 

metronome.  

Head rate of rotation was interpreted from graphical filtered data from a 

monitor mounted on the head as seen in Figure 21. The head sensor was an 

added feature to the iTug platform in which the raw rate of rotation data about the 

Z axis was recorded. Figure 21 demonstrates the maximums and minimums in 

the data and the cyclical pattern of the subjects’ head. Each peak point was a 

representation of when the subject’s head turned over to the left or the right. 

Positive peaks were to the left while negative peaks were when the head turned 

to the right.  
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Figure 21: Filtered Gyroscope Head Data 

Head rate of rotation was manually interpreted from a plot of filtered data 

from the head-mounted monitor. The measurements were in radians per second 

and gathered from Figure 21. It was then converted to degrees per second in 

Table 7. 

�� 
��� � !"�

��� � #180% & 

Table 7: Maximum and Minimum Peaks of Head 

Maximum and Minimum Peaks of Head 

Rad/Sec Deg/Sec 

Max Min Max Min 

2.00 2.00 114.59 114.59 
2.10 2.50 120.32 143.24 
2.00 2.20 114.59 126.05 
2.00 3.00 114.59 171.89 
2.10 2.50 120.32 143.24 
2.00 2.50 114.59 143.24 
2.10 2.50 120.32 143.24 

Average Average 

2.25 128.92 

C 

A 

B 

 A = X-axis  
 B = Y Axis 
 C = Z Axis 
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4.1.4 Stride Length 

Stride length is the distance between two successive placements of the 

same foot and is composed of a swing phase and stance phase.  However, the 

iTug algorithm calculates stride length as a temporal parameter. The 

calculations were based off the time it takes to perform the stride length. The 

iTug plug-in calculates stride length using percent stature; which is a 

percentage of the subjects’ body height used to describe the stride length. 

Stance and swing are considered components of a gait cycle, and when added 

together, they make up the entire gait cycle. The definition of stance is the 

phase of a gait cycle that begins with the strike of a heel and ends with the lift of 

the toe of the same leg. Swing phase was defined as the foot off the ground 

and started after the stance phase. 

Stride length was calculated using the gyroscope data from the shank 

monitors of both legs. The system used the angular velocity about the pitch (Y) 

axis from both of the gyroscopes on the shank. iTug filtered the data from the 

shank initially using a high pass infinite impulse response filter to eliminate the 

drift from the gyroscopes.  The procedure listed in section 4.1.1 (cadence) was 

replicated to detect the initial contact of the heel and the final contact of the toe. 

The formulas below used the initial contact of the right foot ('()�*�) and 

terminal contact of the right foot (+()�*�) which is shown in Figure 15. The 

process of acquiring and processing the shank data was the same for stride 

length as was with cadence, and the same calculations for both the left and 

right sides of the body were done. 



www.manaraa.com

 

49 

 A double pendulum model was used to calculate the stride length as a 

function of percent stature as seen in Figure 22, and to represent human 

motion. The model for swing was a pendulum, while stance was an inverted 

pendulum. The inverted pendulum states the model was rotated 180 degrees. 

Each model required the position angles of the legs, which was derived from 

integrating the angular rate of rotation with respect to time. 

This program operated with the assumption that the left and right steps 

were of equal lengths, therefore, suggesting that the rotations during the left 

stance phase were equal to the rotations during the right stance phase.  

The process below of calculating stride length had been tested and 

validated [31]. The temporal parameter of �, is the distance the body moved 

between the start of the stance and the end of the stance. The distance in the 

swing before the stance is �	 and the distance after the stance is �-. The darker 

lines of the pendulum model show the movement of the right foot, while the thin 

line represents the left foot [2, 5, 13, 34]. As subjects start the gait cycle, the right 

heel strikes the ground while the left heel was ready for toe off. In the next step, 

the left heel moved into swing, while the right transferred into stance. The left foot 

then contacted the ground for a heel strike as the right went into swing. The gait 

cycle is over once the left heel contacted the ground and the right heel went into 

swing. 

."�� (/�0� +�1� � .(+�*� � '()�* 2 1� � '()�*� 
 The double pendulum model was a simplified version of human gait and 

did not factor in double support because the model represented the shank and 
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the thigh, and the heel was not modeled. In order to calculate gait cycle time, the 

difference between the initial contact and the initial contact of the next gait cycle 

was calculated for the same foot.   

 

 

Figure 22: Pendulum Model of Stride Length [13, 26] 

The formulas used to describe this are listed below for one side of the 

body [5, 13]. This algorithm was applied to the stride lengths on both legs.  This 

algorithm used estimations of the thigh angular rotations, as well as the leg 

lengths, which were based on an average of leg lengths taken by the 

manufacturers gait libraries of human subjects. The equations below were used 

to compute swing distance [5, 34]. 

Right Leg 

Left Leg 
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��"��� �%� � �, 

�4��  �%� � �	 2 �- 
��5��� 6�� �7 �% ��"��5�� �  �	 2 �- 2 �, 

�	 � sin;�*�
sin <�*� �=�*� 

�- � sin >�*�
sin <�*� �=�*� 

In the equations above, �	  is the radius of the thigh swing, while �- is 

the radius of the shank swing. The angular velocity recorded from the shank 

monitor was integrated to compute β�*�. The angle ��*� is the angular rotation 

of the thigh and was interpreted from the shank monitor. The angular rotation of 

the thigh was based on the relationship between the shank monitor and 

normative data collected by the manufacturer [13, 31]. In the equations below, 

the angles of ;�*� and >�*� were computed from the angles of ��*� and<�*�. 
The formulas below show the relationship between the integrated angles and 

the angles needed for the inverse pendulum model. Figure 22 shows the 

pendulum models used in the calculations of  >�*�, ;�*�,�	 and �- and all 

these formulas require �=�*� which was based on the leg length 0	 [5, 34]. 

>�*� � % � ��*�
2 �=�*� 

;�*� � % � 2<�*� 2 ��*�
2 �=�*� 

�=�*� � 0	A2�1 � cos ��*�� 
Once all the angles were computed, the swing phase was calculated 

based on the angular rotation of the shank known as <�*� [5, 34]. Percent 
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stature in swing was calculated using the law of cosines which encompasses 

the components of leg lengths and their respective angles to find the distance 

as a temporal parameter as seen in the equation below. It is dependent on the 

time of the gait cycle of that event.  

 

�	D-�*� � �	�*� 2 �-�*� 

�	D-�*� � EF0- 2�	�*�G- 2 F0- 2�-�*�G- � F0- 2�	�*�GF0- 2�-�*�G cos <�*� 
Stance is the remainder of the gait cycle and is the bulk of the stride 

length. The model for stance is an inverse pendulum model that uses a different 

leg length (0-) to compute the angles of rotation in the legs during the phase as 

seen in Figure 22. In the equations below, the angles of ;�*� and >�*� were 

computed from the angles of ��*� and <�*�, which are dependent on 0- and  

<�*� in the equation �=�*�. Distances for the thigh and shank were still 

represented as �	 and �-, but  �=�*� is dependent on 0-. The same process for 

computing the swing phase was applied to the stance phase. The process 

starts off with recording the angular velocity from the shank monitor and then 

was integrated to compute β�*�. Angle β�*� was calculated based on the 

angular rotation of the shank monitor and ��*� was used from the swing phase 

[13, 31].The formula for the angles and the components it depends on are given 

below [5, 34].  

>�*� � % � <�*�
2 �=�*� 
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;�*� � % � 2��*� 2 <�*�
2 �=�*� 

�=�*� � 0-�*�A2�1 � cos <�*�� 
Once all the angles have been calculated, the stance equation was used 

to provide the final component to stride length. Stance was calculated using the 

law of cosines formula that relates the angles to the lengths of the sides of legs. 

Stance distance was calculated as a temporal parameter, and was dependent 

on the time of the gait cycle of that event. The equation used to calculate stance 

is listed below [5, 34]. 

�,�*� � EF0	 2�-�*�G- 2 F0	 2�	�*�G- � F0	 2�-�*�GF0	 2�	�*�G cos ��*� 
Once both swing and stance have been calculated using the law of 

cosines, they both are added together to provide the stride length in percent 

stature [2, 5, 13, 34]. 

��5��� 6�� �7 �% ��"��5�� �  �	 2 �- 2 �, 
Mobility Lab displayed this metric in percent stature in the full report as 

seen in Figure 23. In order to record the stride length as an actual value in 

meters, the percent stature was converted using the formula below in Excel. 

The height of the subject was multiplied by the percent stature to compute the 

stride length in meters as shown in following equation: 

��5��� 6�� �7 �1���5�� � FH�5���� ��"��5� �%�G � F��IJ��� 
�� 7��1���5��G 
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Figure 23: Stride Length from Mobility Lab 

4.2 VICON Data 

Data collected from the Vicon System were calculated using Visual 3D. 

Visual 3D by C-Motion processed all the data at once using a custom algorithm 

developed for this study, known as a pipeline. Visual 3D took the raw data from 

the Vicon Workstation and applied the pipeline to it.  The algorithm (Appendix A) 

utilized the labels provided in Table 4 to base its calculations off of. Each trial 

was brought into Visual 3D and grouped based on the trial and session. The set 

of algorithms in the pipeline mimicked what the iTug plug-in computed. In the 

event that the algorithm (Appendix A) did not compute the parameters correctly, 

plots were used to manually calculate the desired parameters. Plots were 

created for each case when the algorithm did not work, and the points of interest 

on the plots were recorded in Excel and processed.  The plots in each section 

from Visual 3D had event markers in them that represented heel strikes and toe 

offs. 

C=Normative Data 

M=Mean  



www.manaraa.com

 

55 

4.2.1 Cadence 

Cadence was calculated in Visual 3D using the pipeline. Cadence was 

calculated by measuring the number of heel strikes (steps) that happened in a 

given time frame. Both the left and the right foot had to be accounted for in 

cadence. The algorithm (Appendix A) located the path of the heel marker with 

respect to the pelvis and marked the heel strike as an “event maximum” as well 

as the toe off as an “event minimum”. Once the path was determined and the 

event markers located, the algorithm computed the time along the x axis that it 

took to complete one stride. The algorithm then counted all the strides and 

excluded the turns. One stride was calculated as: heel strike of right heel marker, 

toe off of left toe marker and heel strike of right heel marker. This metric was in 

steps per seconds for one leg. These numbers were taken into Excel and were 

converted to steps per minute. This represented the cadence of one leg, and to 

get the overall cadence, both left and right cadence values are added together. 

The pipeline replicated the same algorithm for each subject. 

In order to check the functionality of the process above, and to compute 

the desired parameter in the event of an error, a manual method was used.  The 

Z component was used to measure the gait cycle of the heel marker. The 

assumption of symmetry was valid for healthy subjects, but in this study, an 

average of both sides was taken into account to eliminate the assumption of 

symmetry. The algorithm plotted the graph of a heel marker in the z axis against 

time. Counting the number of gait cycles in a time frame excluding the turns gave 

the total number of steps. This provided the amount of steps in a time frame 
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which had to be converted to steps per minute. Figure 24 shows the right heel 

marker taken by Vicon. Both the left and the right heel markers are being 

displayed in Figure 25..  

 

Figure 24: Right Heel Marker on Vicon 

 

Figure 25: Left and Right Heel Marker on Vicon Joined 

Turns were visualized using the playback function of Visual 3D to confirm 

the exclusion criteria, and to replicate the exclusion criteria that the iTug plug-in 
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performed. A sample calculation below was used to demonstrate this principle. 

Figure 25 shows that the first heel strike happened at 8.1 seconds and ended at 

12 seconds and the turn started at 9.4 seconds and ended at 10.8 seconds. The 

number of steps within that time frame is 6 steps  

6 �����
F�13 � 8.0� � �11 � 9.0�G ������� �

6 �����
3 ������� �

2  �����
1 ������ 

2  �����
1 ������ �

60 �������
1 ������ � 120 �����

������ 

This number was simplified and then multiplied against the conversion 

factor.  

4.2.2 Torso Rate of Rotation 

Torso rate of rotation is the rate of rotation about the pelvis relative to the 

floor. The pelvis was used in this study because it drove the torso rotation at the 

end of the walkway. The torso rotated with the pelvis at this point. The pelvis 

plane was found using the markers on the pelvis (posterior superior iliac spine 

and anterior superior iliac spine of the left and right); this was used to create a 

plane and to find the central axis rate of rotation. The pelvis plane was parallel to 

the calibrated lab floor, and the axis of rotation (yaw axis) in question was 

perpendicular to the floor. The peak turn velocity of the pelvis was determined by 

measuring the maximum turn velocity at the first turn in the algorithm (Appendix 

A); this was when the subject turned 180 degrees at the end of the walkway. The 

algorithm searched for the joint velocity at the turn and filtered the data using a 

Butterworth filter to smooth out the data. The rate of rotation throughout the trial 
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was not desired and therefore was excluded during the gait phase between the 

turns.  

In the event the algorithm did not compute the peak turn velocity, a 

manual method using the angular velocity plot of the pelvis was utilized. A plot of 

the pelvis axis was created and analyzed for the highest rate of rotation about the 

turn as seen in Figure 26. For example the highest point was approximately 

171.9 degrees per second. This measurement unit matched that of APDM and 

was recorded in Excel 

 

Figure 26: Rate of Rotation of the Torso 

4.2.3 Head Rate of Rotation 

The head rate of rotation was constantly being monitored throughout each 

subject’s trial and only the data from the turns were excluded from the 

calculations. To calculate the head rate of rotation, a plane was created using the 
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head markers. The markers created a plane whose central axis was collinear 

with that of the APDM Opal Monitor as seen in Figure 27. As the subject 

performed the trials, the plane rotated about the central axis. Figure 28 shows 

the maximum (all the positives) and minimum (all the negatives) peaks 

throughout a segment of time in the trial. The algorithm (Appendix A) searched 

for these peaks and recorded them. The marker sets used were the two markers 

on the front and the two on the back of the head. The algorithm calculated the 

joint velocity about the central axis (Z axis) and this axis was perpendicular to the 

global coordinate frame which was the floor.  

  

Figure 27: Plane of Markers on Subject’s Head 

The data were then taken into Excel and processed for irregularities such 

as outliers. Medians of the data were used to eliminate the irregularities 

gathered. An example of an outlier can be seen in Figure 28 where there are two 

peak points within the same amplitude.   
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Figure 28: Vicon Head Rotation about Central Axis 

By using the median, the dual peaks were eliminated. Examples of the 

calculations used to eliminate the outliers are in Table 8. 

Table 8: Head Rate of Rotation Data 

Head Rate of Rotation 

Trial Deg/Sec Median Trial Deg/Sec Median 

Slow walk 1 

133.79 

128.84 

Fast walk 1 
239.19 

245.46 
123.89 251.74 

142.89 Fast walk 2 190.85 190.85 

123.57 Fast walk 3 147.50 147.50 

Slow walk 2 118.40 118.40 

Slow walk 3 

121.98 

121.98 156.00 

105.87 
 

 

4.2.4 Stride Length 

The distance between two successive heel strikes of the same foot is a 

stride length. The model of the right side was used to explain the algorithm 
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(Appendix A). The sequence of marker events that were used to measure the 

distance and calculate the stride length along the x axis were the right heel strike, 

right toe off, and the next right heel strike. The algorithm measured the distance 

between those three event markers and calculated the stride for that gait cycle. 

Once again, the turns were excluded from the calculations to resemble the 

APDM output. The data was then exported to Excel for further processing and to 

eliminate the outlier data by using the medians. The process was replicated for 

the left side as well. The average of the two stride lengths gave the average 

stride length for the subject. 

In the event that Visual 3D didn’t compute the needed parameters, a 

manual method was used by interpreting the displacement plot (Figure 29). The 

two heel strikes were marked on the graph for each gait cycle, Once they were 

marked, the displacement between the initial heel contact and the second same-

heel contact points were measured as the stride length. The differences between 

the plateaus where the heel strikes occur are the actual stride length of the gait 

cycle.  An example of how this was calculated manually is seen below. 

��5��� 6�� �7�1���5�� � |2�� '����"0 (���"�� � '����"0 (���"��| 
��5��� 6�� �7 �1���5�� � |1.1 1���5� � ��0.1� 1���5�| � 1.2 1���5� 
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Figure 29: Stride Length of Right Foot 

4.3 Correlation 

Correlating the two systems against one another will validate the APDM 

system to some degree, which was the goal of this project. The strength of the 

correlation was determined using the Pearson’s R correlation [35]. 

Table 9: Correlation Values for Pearson’s R Correlation 

Correlation Value 

0-0.2 Low Correlation 

0.2-0.5 Slight Correlation 
0.5-0.7 Moderate Correlation 

0.7-1 High Correlation 
 

The desired correlation value for a perfectly correlated system is 1 and an 

absolute no correlation value is 0. If the correlation value is positive, both sets of 

data increase together, and if a negative correlation occurs, one data set 

increases while the other decreases. The breakdown of the correlation values 
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are given in Table 9. The formula used to compute the Pearson’s R correlation is 

as follows: 

! � M∑O/ � �∑O��∑/�
APM∑O- � �∑O�-QPM ∑/- � �∑/�-Q 

The x terms refer to one system such as the APDM system and the y 

terms refer to the other system such as the Vicon system. Within each system 

there are four parameters that were compared. Where N represents the number 

of pairs of scores from the data, ∑O/represents the sum of the products of paired 

scores, ∑ O represents the sum of the x scores, ∑/ represents the sum of the y 

scores, ∑O- represents the sum of squared x scores from the data, and ∑/- 
represents the sum of squared y scores from the data. In order to plot the results 

of the correlation values the R the scales of both systems would be required. The 

R value is multiplied by this difference in scale to attain the true slope. Since the 

scales of both systems are the same for each parameter, the R value determined 

would be the slope of the best fit line. There was no standardization which meant 

that there was no technical standard given. An example of standardized data 

would be comparing a new product using the same components such as USB’s 

and Ethernet ports. 

Data gathered from each system was utilized uniquely within each 

software platform. The data from APDM was processed using Mobility Lab, while 

with the Vicon system, Visual 3D was used to process the raw data into the four 

parameters desired for this study.   
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Chapter 5 - Results 

This study aimed at validating the APDM system against the Vicon system 

using the Pearson’s R correlation. The study correlated cadence, torso rate of 

rotation, head rate of rotation and stride length. Correlation values, R, are given 

as follows:   

! � M∑O/ � �∑O��∑/�
APM∑O- � �∑O�-QPM ∑/- � �∑/�-Q 

Subjects performed three trials of each session and each set was 

averaged to minimize the effect of poor trials. This average was used to 

represent the subject’s gait parameters selected for this study. Correlation values 

were computed in SPSS and plotted accordingly. The Pearson’s R correlation 

was used to test the strength of each gait parameter in respect to each system. 

Plots were created for all correlation values for each session as well as the 

overall value. Both data sets were brought into Excel (Microsoft Office) and 

SPSS (IBM) and compared to one another. 

 

5.1 Cadence Correlation 

Cadence data from the Vicon system were converted to match that of the 

APDM system. Data was taken from the reports of both the Mobility Lab and the 

Visual 3D programs and inputted into Table 10. This table represents all the trial 
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averages from each subject and subject’s standard deviations. The correlation 

was calculated for each session followed by an overall correlation value of the 

entire parameter. 

Table 10: Average Trials for Cadence 

    
Normal 

Avg Std Fast Avg Std Slow Avg Std 

    Steps/Min dev Steps/Min dev Steps/Min dev 

H1 
APDM 100 1.00 113 1.73 85 2.52 

Vicon 100 1.66 112 0.46 86 2.41 

H2 
APDM 101 2.89 107 1.73 87 3.21 

Vicon 97 2.37 106 4.70 89 4.45 

H3 
APDM 105 0.00 108 3.21 82 1.53 

Vicon 103 1.18 103 2.04 86 6.15 

H4 
APDM 107 2.65 113 4.16 84 3.79 

Vicon 103 2.32 116 5.54 88 4.38 

H5 
APDM 102 1.53 112 0.58 83 0.58 

Vicon 101 2.35 114 4.44 85 0.90 

H6 
APDM 102 2.00 111 1.53 86 3.06 

Vicon 98 2.96 110 2.37 86 5.26 

H7 
APDM 108 1.00 120 1.15 90 2.52 

Vicon 107 3.48 118 2.50 100 7.55 

H8 
APDM 106 4.16 116 1.15 98 2.08 

Vicon 106 2.69 113 4.27 98 4.60 

H9 
APDM 117 2.65 127 4.58 112 1.53 

Vicon 112 1.97 123 4.66 116 5.25 

H10 
APDM 108 0.00 112 1.53 86 2.08 

Vicon 105 1.61 111 1.38 86 3.17 
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 Table 11: Cadence Correlation Values 

Cadence Correlation 

Session R 

Normal 0.935 

Fast 0.918 

Slow 0.895 
  

Overall 0.967 

 

 

Figure 30:  Correlation Graph of Cadence 

The correlation values are given in Table 11 for each session as well as 

the overall correlation value of the parameter. All three sessions were plotted in 

Figure 30 and the overall correlation value was plotted as well. The R value was 

the measure of linear dependence between two variables and was represented 

Overall 
!= 0.967 

Normal 
!= 0.935 

Fast 
!= 0.918 
Slow 

! = 0.895 
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dotted line in Figure 30.  The overall correlation value was R = 0.967. The 

cadence was highly correlated between the two systems. 

5.1.1 Torso Rate of Rotation Correlation 

Torso rate of rotation was recorded in fast and slow sessions. The data 

was taken from Mobility Lab and the Visual 3D program and inputted into Excel 

and SPSS. The rates of rotation are displayed in Table 12 as well as the 

standard deviation for each average.  

Table 12: Average Rate of Rotation for the Torso 

  

Normal 

Avg 

Std 

dev 

Fast 

Avg 

Std 

dev 

Slow 

Avg 

Std 

dev 

H1 
APDM 201.75 3.65 268.73 18.41 164.81 10.73 

Vicon 188.87 11.88 281.42 22.30 157.46 23.72 

H2 
APDM 202.52 20.40 202.52 20.40 233.55 14.08 

Vicon 190.87 7.43 230.50 17.54 225.63 17.04 

H3 
APDM 176.08 22.23 197.71 9.29 168.08 11.45 

Vicon 204.74 12.60 239.65 26.45 157.08 9.10 

H4 
APDM 204.17 5.08 219.68 28.15 220.79 13.55 

Vicon 219.50 13.03 249.01 53.80 244.47 22.88 

H5 
APDM 182.64 24.07 240.94 21.67 179.03 7.56 

Vicon 194.28 21.93 251.69 17.72 206.90 12.27 

H6 
APDM 141.11 10.70 208.97 30.26 144.87 37.13 

Vicon 148.70 12.93 237.61 12.62 136.20 20.63 

H7 
APDM 181.85 4.94 148.94 2.53 146.04 12.99 

Vicon 186.51 6.76 169.47 3.26 152.94 14.80 

H8 
APDM 295.74 21.56 249.07 44.91 206.40 8.56 

Vicon 311.80 16.44 231.01 24.78 208.59 14.82 

H9 
APDM 218.71 19.94 241.36 37.90 223.14 22.07 

Vicon 205.44 14.01 249.19 58.17 236.01 33.49 

H10 
APDM 178.36 9.33 209.84 13.37 176.23 31.68 

Vicon 181.64 13.65 249.09 27.27 182.61 35.06 
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Table 13: Torso Rate of Rotation Correlation Values 

Torso Rate of 
Rotation Correlation 

Session R 

Normal 0.955 

Fast 0.851 

Slow 0.940 

  

Overall 0.907 

 

Figure 31: Correlation for Rate of Rotation for Torso 

The correlation values are given in Table 13 for each session as well as 

the overall correlation value of the parameter. All sessions were plotted in Figure 

31 and the overall correlation value was plotted as well.  The R value was the 

Overall 
! � 0.907 

Normal 
! � 0.955 

Fast 
! � 0.851 

Slow 
! = 0.940 
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measure of linear dependence between two variables and was represented 

dotted line in Figure 31. The overall correlation value was R = 0.907. The torso 

rate of rotation for was highly correlated between the two systems. 

5.1.2 Head Rate of Rotation Correlation 

The head rate of rotation data were taken from Visual 3D and converted 

from the charts in Mobility Lab. Tables of the average head rate of rotation per 

trial were created in Excel. Data was then brought into SPSS for processing and 

calculating the Pearson’s R correlation. The averages are in tabular form as seen 

in Table 14. Standard deviations are displayed in conjunction with averages. 

Table 14: Average Rate of Rotation for Head 

  
Fast 
Avg Std 

Slow 
Avg Std 

  Deg/Sec dev Deg/Sec dev 

H1 
APDM 205.25 13.55 136.92 7.13 

Vicon 188.19 28.29 127.75 5.31 

H2 
APDM 233.55 14.08 219.39 30.87 

Vicon 255.69 43.17 161.86 30.60 

H3 
APDM 148.47 12.04 126.53 9.27 

Vicon 158.94 55.51 131.44 24.31 

H4 
APDM 198.70 44.95 100.97 2.27 

Vicon 229.50 23.02 109.68 9.34 

H5 
APDM 310.22 57.61 199.54 13.25 

Vicon 322.79 13.70 193.36 52.22 

H6 
APDM 270.44 4.77 176.39 4.13 

Vicon 230.59 15.57 184.63 16.70 

H7 
APDM 240.85 23.33 215.22 10.12 

Vicon 236.87 32.27 183.87 67.98 

H8 
APDM 171.30 10.47 148.61 12.32 

Vicon 158.75 0.15 142.04 24.26 

H9 
APDM 283.31 21.63 225.08 2.12 

Vicon 275.66 44.29 202.36 28.97 

H10 
APDM 333.23 19.16 194.23 24.46 

Vicon 338.44 22.01 197.05 27.28 
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Table 15: Head Rate of Rotation Correlation Values 

Head Rate of 
Rotation Correlation 

Session R 

Fast 0.942 

Slow 0.884 

  

Overall 0.942 

 

 

Figure 32: Correlation for Rate of Rotation of the Head 

The correlation values are given in Table 15 for each session as well as 

the overall correlation value of the parameter. Both sessions were plotted in 

Figure 32 and the overall correlation value was plotted as well. The R value was 

the measure of linear dependence between two variables and was represented 

Overall 
! = 0.942 

Fast 
! = 0.942 

Slow 
! = 0.884 

 

 



www.manaraa.com

 

71 

dotted line in Figure 32. The overall correlation value was R=0.942, indicating 

high correlation between both systems for head rate of rotation.  

5.1.3 Stride Length Correlation 

Stride length was calculated in Excel from the reports of APDM and Visual 

3D.  Data was put into tabular form for processing and calculation in SPSS. The 

averages of all the trials were taken as well as the standard deviations displayed 

in Table 16.  

Table 16: Average Stride Length  

  

Normal 

Avg 

Std 

Dev 

Fast 

Avg 

Std 

Dev 

Slow 

Avg 

Std 

Dev 

  

H1 
APDM 1.59 0.05 1.66 0.02 1.41 0.02 

Vicon 1.50 0.04 1.84 0.04 1.28 0.02 

H2 
APDM 1.48 0.06 1.51 0.04 1.42 0.03 

Vicon 1.41 0.03 1.59 0.04 1.28 0.01 

H3 
APDM 1.41 0.02 1.44 0.02 1.35 0.06 

Vicon 1.31 0.02 1.46 0.02 1.21 0.10 

H4 
APDM 1.54 0.03 1.63 0.02 1.44 0.02 

Vicon 1.46 0.05 1.49 0.07 1.29 0.01 

H5 
APDM 1.41 0.04 1.45 0.03 1.28 0.03 

Vicon 1.28 0.03 1.28 0.03 1.09 0.04 

H6 
APDM 1.59 0.02 1.58 0.02 1.38 0.03 

Vicon 1.35 0.01 1.46 0.04 1.08 0.05 

H7 
APDM 1.42 0.01 1.42 0.04 1.36 0.01 

Vicon 1.16 0.05 1.25 0.05 1.03 0.02 

H8 
APDM 1.48 0.02 1.46 0.00 1.39 0.02 

Vicon 1.32 0.01 1.29 0.02 1.11 0.02 

H9 
APDM 1.34 0.00 1.31 0.05 1.17 0.04 

Vicon 1.27 0.07 1.22 0.12 0.94 0.04 

H10 
APDM 1.35 0.01 1.48 0.02 1.24 0.02 

Vicon 1.20 0.01 1.32 0.02 1.00 0.06 
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Table 17: Stride Length Correlation Values 

Stride Length 
Correlation 

Session R 

Normal 0.776 

Fast 0.8 

Slow 0.817 

  

Overall 0.861 

 

 

Figure 33: Correlation for Stride Length 

The correlation values are given in Table 17 for each session as well as 

the overall correlation value of the parameter. Both sessions were plotted in 

Normal 
! = 0.776 

Fast 
! = 0.800 

Slow 
! = 0.817 

 

 

Overall 
! = 0.861 
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Figure 33 as well as the overall correlation value. The R value was the measure 

of linear dependence between two variables and was represented dotted line in 

Figure 33.The overall Pearson’s R correlation value was R=0.861 and highly 

correlated between both systems. Normal and fast sessions were moderately 

correlated, while the slow session had the highest correlation value.  
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Chapter 6 - Discussion and Limitations 

6.1 Discussion 

The results of this study demonstrated the correlation between the Vicon 

and APDM systems in terms of the following parameters: cadence, torso rate of 

rotation, head rate of rotation and stride length; all of which are highly correlated 

as seen in Table 18. The values calculated from the iTug algorithm were 

accurate representations of subject’s selected gait parameters as compared to 

the Vicon system. The correlation values for each session were computed to 

show the difference within each session as compared to the overall correlation 

value. By computing the overall correlation values for a parameter, a more 

accurate representation of the parameter was computed.  

Table 18: Pearson’s R Correlation Values 

Cadence   Torso Rate of Rotation 

Normal Fast Slow   Normal Fast Slow 

0.935 0.918 0.895   0.955 0.851 0.94 

Overall 0.967   Overall 0.907 

              

Stride Length   Head Rate of Rotation 

Normal Fast Slow   

  

Fast Slow 

0.776 0.8 0.817   0.942 0.884 

Overall 0.861   Overall 0.942 
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Adding more data points to a calculation gives a better representation of 

what the data is doing. The APDM system was very accurate in collecting and 

calculating the gait parameters for this study, but the correlation values could 

have been slightly higher if some of the ways that the iTug algorithm computed 

the data were different.  

Controlling the subjects’ speed could have led to a greater correlation 

values. What may have caused the lower correlations was the fact that the 

speeds were self selected, and each individual changed speed differently; some 

individuals increased their cadence while some increased their stride length. 

Different combinations of this caused different outcomes on how gait speed was 

controlled. A solution to this may include controlling the speed on a treadmill, this 

would have allowed for consistency throughout the subjects’ testing sessions. 

One of the lowest correlation values was from the stride length parameter. 

Gathering stride length from a gyroscope can be tricky and generally ends up 

introducing more errors into the calculation due to drift. Using the shank to 

represent the heel can be inaccurate in this model due to the fact that 

movements of the shank and the heel are not the same between individuals. 

Mounting the APDM monitor on the actual heel could have led to a better 

representation of the subjects’ leg. 

APDM’s iTug may have introduced a slight error into the system with the 

use of gyroscopes. The exact locations  of the gyroscopes on the body play an 

important role in measuring a segment properly, and could lead to errors if not 

placed properly. These errors could result in wrong angles calculated or wrong 
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stride lengths calculated. The process of computing the stride length (percent 

stature) from the shank monitors was not direct. The algorithm utilized average 

leg lengths and average thigh movements in conjunction with the actual subject 

shank data to calculate stride length. The algorithm used these estimated lengths 

to calculate critical angles in the double pendulum model. This method was not 

completely accurate because of subjects’ differing body segment lengths and 

movements. As a result, stride length required the most computation in order to 

reach the desired value in APDM’s iTug plug-in. This gave the calculations a 

higher chance at picking up an error and transferring it through to the result. A 

solution that could have increased the accuracy of this algorithm would be to 

measure the actual leg length of the subject and to include it in the calculations 

instead of the average data. By increasing the accuracy of the results, the 

correlation values could have slightly increased. This modification would only 

result in a slight increase due to thigh movements being estimated. 

Another potential solution to the low correlation value of stride length 

would be to calibrate the APDM monitors prior to each subject’s trial. The 

calibration process would utilize the same two shank monitors and have the 

subjects’ walk down a pathway of a known distance. The physical stride length 

would be calibrated with that of the APDM system’s stride length and would add 

a calibration factor that would be applied to all the subject’s trials. 

The final possible method for increasing the stride length correlation would 

be to use four monitors instead of two and to use the actual leg lengths from the 

subject. This would increase precision and accuracy in the pendulum model’s 
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stance phase and swing phase. Monitors would be placed on both sides of the 

shanks and thighs; and by placing the monitors on the thigh, a better 

representation of what the thigh motion is can be measured. This method is more 

direct than the iTug’s version and would be significantly more accurate.  

However the stride length parameter can still be considered to be accurate 

and highly correlated against the Vicon system. Another parameter that can have 

better correlation values is the head rate of rotation. Calculating the rate of 

rotation of the head was not an automated process, which also added human 

error into the calculations.  Manually calculating the peaks was not efficient and 

not clinically appropriate. Automating this process would decrease the human 

error and improve accuracy. Placing the devices on the central axis of the head 

removed the need for axis transformation for this calculation. In the event the 

monitor was mounted on the forehead or the back of the head, transformation 

formulas would have to be used to relate the position of the monitor to the central 

location.  

Overall, this study suggested that the parameters of cadence, torso rate of 

rotation, head rate or rotation and stride length are valid parameters that could be 

used to monitor gait parameters associated with mild traumatic brain injury.  

6.2 Limitations 

This study included few limitations in the APDM system as well as in the 

Vicon system: 
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1. A small sample size was chosen, and a bigger sample size would have 

smoothed out the data. 

2. Healthy subjects were used and not subjects with an mTBI.  

3. Data from the angular velocity of the gyroscope still had to be 

mathematically integrated, adding slight errors to the calculations. 

4. Determination of stride length required calibration. 

5. When subjects walked too fast or ran, their data would not be calculated 

due to noise in the monitors. 

6. APDM’s iTug did not compute average head rate of rotation because it 

was not a parameter common to Parkinson’s disease. Manual calculation 

of the head rate of rotation was necessary, which introduced some human 

error.  

7. Mobility Lab reports are long and report far more parameters than are 

needed for this application. Separating the needed parameters was time 

consuming. 

8. Vicon system requires an extensive setup and a controlled laboratory. 

9. Vicon was not portable and it requires additional hardware. 

10. Vicon requires a controlled lighting environment and must be calibrated 

after every subject trial session. 
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Chapter 7 - Conclusion and Future Work 

7.1 Conclusion  

This study aimed to validate commercially available wearable sensor 

system to monitor selected gait parameters against a gold standard system. The 

APDM system was chosen for its low cost, portability and its ability to be used in 

outdoor environments [2]. Validation of the APDM system against the Vicon 

system was performed using four parameters relevant to mild traumatic brain 

injury: cadence, torso rate of rotation, head rate of rotation and stride length [1, 

7]. Ten healthy subjects between 20 -27 years of age completed this study by 

performing three different gait sessions. Correlations between the systems were 

done using these parameters and the Pearson’s R correlation formula.  

The correlation values for cadence, head rate of rotation and torso rate of 

rotation were found to be high between both systems. Out of all the correlation 

values, stride length was the lowest but was still highly correlated, and was 

potentially low because stride length was not calibrated specifically for each 

individual subject; the information for performing this calibration was not available 

at the time of this study. A later study could show the potential increase in 

correlation with this enhanced calibration. Overall, the APDM Movement Monitor 

system was found to be valid against the gold standard of the Vicon system for 
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the selected parameters, and would be a great addition for clinician to use on 

subjects in or out of the laboratory. 

7.2 Future Work  

Future work on this topic would include the validation of the APDM system 

by testing it with actual mTBI subjects. This study validated four common 

parameters relevant to mTBI. Testing subjects with an mTBI using the same 

study parameters and comparing the data against the normal population would 

provide insight on how well the system works for subjects exhibiting 

abnormalities. 

 Generating an mTBI plug-in for APDM’s Mobility Lab software would also 

be necessary for the task of testing mTBI subjects. The plug-in would incorporate 

a head sensor that would be applied to the algorithm and generate a smaller 

report with the desired parameters, which would increase its clinical utility. 

By using the accelerometers in conjunction with the gyroscopes, the gait 

events could be located more accurately. The system can be used to view the 

different periods of a subject’s gait cycle. Measuring the accelerations of certain 

body sefments cab provide an accurate location of an event, and be used to view 

different periods of a subject’s gait cycle, including but not limited to mid-swing, 

terminal contacts, initial contacts, swing, pre-swing and loading response.  
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Appendix A - Pipeline 

Start of Pipeline 
 
/EVENT_NAME=BoT 
 /FRAME=1 
! /TIME= 
; 
 
Event_Explicit 
/EVENT_NAME=EoT 
/FRAME=EOF -50 
! /TIME= 
; 
 
Computes the head joint velocity using the head plane which consists of the two 

 front and two back head markers 
 
Compute_Model_Based_Data 
/RESULT_NAME=HeadRotRate 
/FUNCTION=JOINT_VELOCITY 
/SEGMENT=RHE 
! /REFERENCE_SEGMENT=LAB 
/RESOLUTION_COORDINATE_SYSTEM= 
! /USE_CARDAN_SEQUENCE=FALSE 
! /NORMALIZATION=FALSE 
! /NORMALIZATION_METHOD= 
! /NORMALIZATION_METRIC= 
! /NEGAITEX=FALSE 
! /NEGAITEY=FALSE 
! /NEGAITEZ=FALSE 
! /AXIS1=X 
! /AXIS2=Y 
! /AXIS3=Z 
; 
 
Converts the head rate of rotation to degrees per second from radians per second 
 
Multiply_Signals_By_Constant 
/SIGNAL_TYPES=LINK_MODEL_BASED 
/SIGNAL_NAMES=HeadRotRate 
! /SIGNAL_FOLDER=ORIGINAL 
/RESULT_NAMES=HeadRateRad 
/RESULT_TYPES=LINK_MODEL_BASED 
! /RESULT_FOLDER=PROCESSED 
! /RESULT_SUFFIX= 
! /SIGNAL_COMPONENTS= 
/CONSTANT=pi()/180 
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Appendix A (Continued) 
 
Computes the pelvis rate of rotation using the two Asis and 2 Psis markers as a 

 plane. The joint velocity of this plane is calculated. The pelvis drives the rotation of 
 the torso on the turn. 

 
Compute_Model_Based_Data 
/RESULT_NAME=LumbarRateRot 
/FUNCTION=JOINT_VELOCITY 
/SEGMENT=RPV 
! /REFERENCE_SEGMENT=LAB 
/RESOLUTION_COORDINATE_SYSTEM= 
! /USE_CARDAN_SEQUENCE=FALSE 
! /NORMALIZATION=FALSE 
! /NORMALIZATION_METHOD= 
! /NORMALIZATION_METRIC= 
! /NEGAITEX=FALSE 
! /NEGAITEY=FALSE 
! /NEGAITEZ=FALSE 
! /AXIS1=X 
! /AXIS2=Y 
! /AXIS3=Z 
; 
 
Applies a low pass filter to smooth out the data for the rotation of the pelvis 
 
Lowpass_Filter 
/SIGNAL_TYPES=LINK_MODEL_BASED 
/SIGNAL_NAMES=LumbarRateRot 
! /SIGNAL_FOLDER=ORIGINAL 
! /RESULT_SUFFIX= 
! /RESULT_FOLDER=PROCESSED 
! /FILTER_CLASS=BUTTERWORTH 
/FREQUENCY_CUTOFF=3 
! /NUM_REFLECTED=6 
! /TOTAL_BUFFER_SIZE=6 
! /NUM_BIDIRECTIONAL_PASSES=1 
; 
 
Converts the pelvis rate of rotation to degrees per second from radians per second 
 
Multiply_Signals_By_Constant 
/SIGNAL_TYPES=LINK_MODEL_BASED 
/SIGNAL_NAMES=LumbarRateRot 
! /SIGNAL_FOLDER=ORIGINAL 
/RESULT_NAMES=LumbarRateRotRad 
/RESULT_TYPES=LINK_MODEL_BASED 
! /RESULT_FOLDER=PROCESSED 
! /RESULT_SUFFIX= 
! /SIGNAL_COMPONENTS= 
/CONSTANT=pi()/180 
; 
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Appendix A (Continued) 
 

Applies a low pass filter to smooth out the data for the lumbar rate of rotation 
 
Lowpass_Filter 
/SIGNAL_TYPES=LINK_MODEL_BASED 
/SIGNAL_NAMES=LumbarRateRotRad 
/SIGNAL_FOLDER=PROCESSED 
!/RESULT_SUFFIX= 
! /RESULT_FOLDER=PROCESSED 
! /FILTER_CLASS=BUTTERWORTH 
/FREQUENCY_CUTOFF=3 
! /NUM_REFLECTED=6 
! /TOTAL_BUFFER_SIZE=6 
! /NUM_BIDIRECTIONAL_PASSES=1 
; 
 
Applies a low pass filter to smooth out the data for the head rate of rotation 
 
Lowpass_Filter 
 /SIGNAL_TYPES=LINK_MODEL_BASED 
 /SIGNAL_NAMES=HeadRotRate 
 /SIGNAL_FOLDER=ORIGINAL 
! /RESULT_SUFFIX= 
! /RESULT_FOLDER=PROCESSED 
! /FILTER_CLASS=BUTTERWORTH 
/FREQUENCY_CUTOFF=3 
! /NUM_REFLECTED=6 
! /TOTAL_BUFFER_SIZE=6 
! /NUM_BIDIRECTIONAL_PASSES=1 
; 
 
Computes the target path of the left toe marker in respect to the Pelvis plane 
 
Compute_Model_Based_Data 
/RESULT_NAME=LTOE_WRT_PELVIS 
/FUNCTION=TARGET_PATH 
/SEGMENT=LTOE 
/REFERENCE_SEGMENT=RPV 
/RESOLUTION_COORDINATE_SYSTEM=RPV 
! /USE_CARDAN_SEQUENCE=FALSE 
! /NORMALIZATION=FALSE 
! /NORMALIZATION_METHOD= 
! /NORMALIZATION_METRIC= 
! /NEGAITEX=FALSE 
! /NEGAITEY=FALSE 
! /NEGAITEZ=FALSE 
! /AXIS1=X 
! /AXIS2=Y 
! /AXIS3=Z 
; 
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Appendix A (Continued) 
 
Computes the target path of the left heel marker in respect to the Pelvis plane 
 
Compute_Model_Based_Data 
/RESULT_NAME=LHEE_WRT_PELVIS 
/FUNCTION=TARGET_PATH 
/SEGMENT=LHEE 
/REFERENCE_SEGMENT=RPV 
/RESOLUTION_COORDINATE_SYSTEM=RPV 
! /USE_CARDAN_SEQUENCE=FALSE 
! /NORMALIZATION=FALSE 
! /NORMALIZATION_METHOD= 
! /NORMALIZATION_METRIC= 
! /NEGAITEX=FALSE 
! /NEGAITEY=FALSE 
! /NEGAITEZ=FALSE 
! /AXIS1=X 
! /AXIS2=Y 
! /AXIS3=Z 
; 
 
Computes the target path of the right toe marker in respect to the Pelvis plane 
 
Compute_Model_Based_Data 
/RESULT_NAME=RTOE_WRT_PELVIS 
/FUNCTION=TARGET_PATH 
/SEGMENT=RTOE 
/REFERENCE_SEGMENT=RPV 
/RESOLUTION_COORDINATE_SYSTEM=RPV 
! /USE_CARDAN_SEQUENCE=FALSE 
! /NORMALIZATION=FALSE 
! /NORMALIZATION_METHOD= 
! /NORMALIZATION_METRIC= 
! /NEGAITEX=FALSE 
! /NEGAITEY=FALSE 
! /NEGAITEZ=FALSE 
! /AXIS1=X 
! /AXIS2=Y 
! /AXIS3=Z 
; 
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Appendix A (Continued) 
 
Computes the target path of the right heel marker in respect to the pelvis plane 
 
Compute_Model_Based_Data 
/RESULT_NAME=RHEE_WRT_PELVIS 
/FUNCTION=TARGET_PATH 
/SEGMENT=RHEE 
/REFERENCE_SEGMENT=RPV 
/RESOLUTION_COORDINATE_SYSTEM=RPV 
! /USE_CARDAN_SEQUENCE=FALSE 
! /NORMALIZATION=FALSE 
! /NORMALIZATION_METHOD= 
! /NORMALIZATION_METRIC= 
! /NEGAITEX=FALSE 
! /NEGAITEY=FALSE 
! /NEGAITEZ=FALSE 
! /AXIS1=X 
! /AXIS2=Y 
! /AXIS3=Z 
; 
 
Locates the maximum event markers of the left heel marker with respect to the 

 pelvis plane 
 
Event_Maximum 
/SIGNAL_TYPES=LINK_MODEL_BASED 
/SIGNAL_NAMES=LHEE_WRT_PELVIS 
! /SIGNAL_FOLDER=ORIGINAL 
/EVENT_NAME=LHS 
/SELECT_X=TRUE 
! /SELECT_Y=FALSE 
! /SELECT_Z=FALSE 
/FRAME_WINDOW=20 
! /START_AT_EVENT= 
! /END_AT_EVENT= 
/EVENT_INSTANCE=0 
; 
 
Locates the high event markers of the right heel marker with respect to the pelvis 

 plane 
 
Event_Maximum 
/SIGNAL_TYPES=LINK_MODEL_BASED 
/SIGNAL_NAMES=RHEE_WRT_PELVIS 
! /SIGNAL_FOLDER=ORIGINAL 
/EVENT_NAME=RHS 
/SELECT_X=TRUE 
! /SELECT_Y=FALSE 
! /SELECT_Z=FALSE 
/FRAME_WINDOW=20 
! /START_AT_EVENT= 
! /END_AT_EVENT= 
/EVENT_INSTANCE=0 
; 
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Appendix A (Continued) 
 
Locates the low event markers of the left toe marker with respect to the pelvis 

 plane 
 
Event_Minimum 
/SIGNAL_TYPES=LINK_MODEL_BASED 
/SIGNAL_NAMES=LTOE_WRT_PELVIS 
! /SIGNAL_FOLDER=ORIGINAL 
/EVENT_NAME=LTO 
/SELECT_X=TRUE 
! /SELECT_Y=FALSE 
! /SELECT_Z=FALSE 
/FRAME_WINDOW=20 
! /START_AT_EVENT= 
! /END_AT_EVENT= 
/EVENT_INSTANCE=0 
 
Locates the low event markers of the right toe with respect to the pelvis 
 
Event_Minimum 
/SIGNAL_TYPES=LINK_MODEL_BASED 
/SIGNAL_NAMES=RTOE_WRT_PELVIS 
! /SIGNAL_FOLDER=ORIGINAL 
/EVENT_NAME=RTO 
/SELECT_X=TRUE 
! /SELECT_Y=FALSE 
! /SELECT_Z=FALSE 
/FRAME_WINDOW=20 
! /START_AT_EVENT= 
! /END_AT_EVENT= 
/EVENT_INSTANCE=0 
 
Using the Z component of the Lumbar rate or rotation an event marker is placed 
after 65 degrees per second for the lumbar rate of rotation. Determining if the 
signal doesn’t passes through the threshold. Meaning the turn exclusion 
 
Event_Threshold 
/SIGNAL_TYPES=LINK_MODEL_BASED 
/SIGNAL_NAMES=LumbarRateRot 
/SIGNAL_FOLDER=PROCESSED 
/EVENT_NAME=Thld1 
! /SELECT_X=FALSE 
! /SELECT_Y=FALSE 
/SELECT_Z=TRUE 
! /SELECT_RESIDUAL=FALSE 
/THRESHOLD=65 
! /FRAME_WINDOW=8 
! /FRAME_OFFSET=0 
/ASCENDING=TRUE 
! /DESCENDING=FALSE 
/ENSURE_RANGE_FRAMES_BEFORE_THRESHOLD_CROSSING=TRUE 
! /ENSURE_RANGE_FRAMES_AFTER_THRESHOLD_CROSSING=FALSE 
/START_AT_EVENT=BOT 
/END_AT_EVENT=EOT 
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Appendix A (Continued) 
 
/EVENT_INSTANCE=1 
Using the Z component of the Lumbar rate or rotation an event marker is placed 
after 65 degrees per second for the lumbar rate of rotation. Determining if the 
signal will passes through the threshold. Meaning the turn exclusion 
 
Event_Threshold 
/SIGNAL_TYPES=LINK_MODEL_BASED 
/SIGNAL_NAMES=LumbarRateRot 
/SIGNAL_FOLDER=PROCESSED 
/EVENT_NAME=Thld2 
! /SELECT_X=FALSE 
! /SELECT_Y=FALSE 
/SELECT_Z=TRUE 
! /SELECT_RESIDUAL=FALSE 
/THRESHOLD=65 
! /FRAME_WINDOW=8 
! /FRAME_OFFSET=0 
! /ASCENDING=FALSE 
/DESCENDING=TRUE 
! /ENSURE_RANGE_FRAMES_BEFORE_THRESHOLD_CROSSING=FALSE 
/ENSURE_RANGE_FRAMES_AFTER_THRESHOLD_CROSSING=TRUE 
/START_AT_EVENT=BOT 
/END_AT_EVENT=EOT 
/EVENT_INSTANCE=1 
; 
 
Computes the maximum value of the head rate of rotation using the head plane 
and stores the value as a metric 
 
Metric_Maximum 
/RESULT_METRIC_NAME=MaxHeadRot 
! /APPLY_AS_SUFFIX_TO_SIGNAL_NAME=FALSE 
! /RESULT_METRIC_FOLDER=PROCESSED 
/SIGNAL_TYPES=LINK_MODEL_BASED 
/SIGNAL_NAMES=HeadRotRate 
! /SIGNAL_FOLDER=PROCESSED 
/SIGNAL_COMPONENTS=Z 
/EVENT_SEQUENCE=LHS+LTO+LHS 
/EXCLUDE_EVENTS=Thld1+Thld2 
/GENERATE_MEAN_AND_STDDEV=FALSE 
! /APPEND_TO_EXISTING_VALUES=FALSE 
! /CREATE_GLOBAL_MAXIMUM=FALSE 
; 
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Appendix A (Continued) 
 
Computes the maximum value of the pelvis plane rotation and store the values as 
a metric 
 
Metric_Maximum 
/RESULT_METRIC_NAME=MaxTorsoRot 
! /APPLY_AS_SUFFIX_TO_SIGNAL_NAME=FALSE 
! /RESULT_METRIC_FOLDER=PROCESSED 
/SIGNAL_TYPES=LINK_MODEL_BASED 
/SIGNAL_NAMES=LumbarRateRot 
 /SIGNAL_FOLDER=PROCESSED 
/SIGNAL_COMPONENTS=Z 
/EVENT_SEQUENCE=Thld1+Thld2 
/EXCLUDE_EVENTS= 
/GENERATE_MEAN_AND_STDDEV=FALSE 
! /APPEND_TO_EXISTING_VALUES=FALSE 
! /CREATE_GLOBAL_MAXIMUM=FALSE 
; 
 
Displays the maximum torso rte of rotation from the turn in graphical form 
 
Event_Maximum 
 /SIGNAL_TYPES=LINK_MODEL_BASED 
 /SIGNAL_NAMES=LumbarRateRot 
 /SIGNAL_FOLDER=ORIGINAL 
/EVENT_NAME=MaxTorsoRot 
! /SELECT_X=FALSE 
! /SELECT_Y=FALSE 
/SELECT_Z=TRUE 
! /FRAME_WINDOW=8 
/START_AT_EVENT=THLD1 
/END_AT_EVENT=THLD2 
/EVENT_INSTANCE=0 
; 
 
Calculates the time between the  event sequence of the left heel marker, left toe 
marker and left heel marker and is known as the left heel strike 
 
Metric_Time_Between_Events 
/RESULT_METRIC_NAME=LHS_STRIDE 
! /RESULT_METRIC_FOLDER=PROCESSED 
/EVENT_SEQUENCE=LHS+LTO+LHS 
/EXCLUDE_EVENTS=Thld1+Thld2 
/GENERATE_MEAN_AND_STDDEV=FALSE 
! /APPEND_TO_EXISTING_VALUES=FALSE 
; 
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Appendix A (Continued) 
 
Calculates the time between the event sequence of the right heel marker, right toe 
marker and right heel marker and is known as the right heel strike 
 
Metric_Time_Between_Events 
/RESULT_METRIC_NAME=RHS_STRIDE 
! /RESULT_METRIC_FOLDER=PROCESSED 
/EVENT_SEQUENCE=RHS+RTO+RHS 
/EXCLUDE_EVENTS=Thld1+Thld2 
/GENERATE_MEAN_AND_STDDEV=FALSE 
! /APPEND_TO_EXISTING_VALUES=FALSE 
; 
 
Creates a table of time metrics from the event markers of the right heel strike 

 marker 
 
Evaluate_Expression 
/EXPRESSION=1/METRIC::PROCESSED::RHS_STRIDE 
/RESULT_NAME=RHS_CADENCE 
! /RESULT_TYPE=DERIVED 
! /RESULT_FOLDER=PROCESSED 
; 
 
Creates a table of time metrics from the event markers of the left heel strike marker 
 
Evaluate_Expression 
/EXPRESSION=1/METRIC::PROCESSED::LHS_STRIDE 
/RESULT_NAME=LHS_CADENCE 
! /RESULT_TYPE=DERIVED 
! /RESULT_FOLDER=PROCESSED 
; 
 
Locates and creates a table of the amount of steps for the left heel strike marker 
and cadence is calculated from the events 
 
Metric_Median 
/RESULT_METRIC_NAME=LHS_CADENCE 
! /APPLY_AS_SUFFIX_TO_SIGNAL_NAME=FALSE 
/RESULT_METRIC_FOLDER=PROCESSED 
/SIGNAL_TYPES=DERIVED 
/SIGNAL_NAMES=LHS_CADENCE 
/SIGNAL_FOLDER=PROCESSED 
! /SIGNAL_COMPONENTS=ALL_COMPONENTS 
/EVENT_SEQUENCE= 
/EXCLUDE_EVENTS= 
/GENERATE_MEAN_AND_STDDEV=FALSE 
/APPEND_TO_EXISTING_VALUES=FALSE 
; 
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Appendix A (Continued) 
 
Locates and creates a table of the amount of steps for the right heel strike and 
cadence is calculated from the events 
 
Metric_Median 
/RESULT_METRIC_NAME=RHS_CADENCE 
/APPLY_AS_SUFFIX_TO_SIGNAL_NAME=FALSE 
/RESULT_METRIC_FOLDER=PROCESSED 
/SIGNAL_TYPES=DERIVED 
/SIGNAL_NAMES=RHS_CADENCE 
/SIGNAL_FOLDER=PROCESSED 
/SIGNAL_COMPONENTS=ALL_COMPONENTS 
/EVENT_SEQUENCE= 
/EXCLUDE_EVENTS= 
/GENERATE_MEAN_AND_STDDEV=FALSE 
/APPEND_TO_EXISTING_VALUES=FALSE 
; 
 
Applies a formula to the processed parameters of both left and right cadence 
numbers 
 
Evaluate_Expression 
/EXPRESSION=120*(METRIC::PROCESSED::LHS_CADENCE+METRIC::PROCESSE
D::RHS_CADENCE)/2 
/RESULT_NAME=AVG_CADENCE 
! /RESULT_TYPE=DERIVED 
! /RESULT_FOLDER=PROCESSED 
; 
 
Calculates the distance between the event markers using the sequence of left heel 
marker, left toe marker and left heel marker for stride length of the left side 
 
Metric_Vector_Between_Events 
/RESULT_METRIC_NAME=TotalStrideL_Metric 
! /RESULT_METRIC_FOLDER=PROCESSED 
/GENERATE_VECTOR_LENGTH_METRIC=TRUE 
/START_SIGNAL_TYPE=TARGET 
/START_SIGNAL_NAME=LHEE 
! /START_SIGNAL_FOLDER=ORIGINAL 
/END_SIGNAL_TYPE=TARGET 
/END_SIGNAL_NAME=LHEE 
! /END_SIGNAL_FOLDER=ORIGINAL 
/EVENT_SEQUENCE=LHS+LTO+LHS 
/EXCLUDE_EVENTS=Thld1+Thld2 
/GENERATE_MEAN_AND_STDDEV=FALSE 
! /APPEND_TO_EXISTING_VALUES=FALSE 
! /RETAIN_NO_DATA_VALUES=FALSE 
; 
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Appendix A (Continued) 
 
Calculates the distance between the event markers using the sequence of right 
heel marker, right toe marker and right heel marker for stride length of the right 
side 
 
Metric_Vector_Between_Events 
/RESULT_METRIC_NAME=TotalStrideR_Metric 
! /RESULT_METRIC_FOLDER=PROCESSED 
/GENERATE_VECTOR_LENGTH_METRIC=TRUE 
/START_SIGNAL_TYPE=TARGET 
/START_SIGNAL_NAME=RHEE 
! /START_SIGNAL_FOLDER=ORIGINAL 
/END_SIGNAL_TYPE=TARGET 
/END_SIGNAL_NAME=RHEE 
! /END_SIGNAL_FOLDER=ORIGINAL 
/EVENT_SEQUENCE=RHS+RTO+RHS 
/EXCLUDE_EVENTS=Thld1+Thld2 
/GENERATE_MEAN_AND_STDDEV=FALSE 
! /APPEND_TO_EXISTING_VALUES=FALSE 
! /RETAIN_NO_DATA_VALUES=FALSE 
; 
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Appendix B - APDM Release Statement 
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Appendix B (Continued) 
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